Graduate Preliminary Examination

Algebra I

22.9.2004; 3 hours

Problem 1. Let p be a prime number. If G is an infinite p-group such that every proper non-trivial subgroup of G has order p, prove that:

- (a) p > 2;
- (b) G must be a simple group.

(Recall that a group G is called <u>simple</u> if it has no non-trivial normal subgroup.)

Problem 2. Let \mathbb{Q} be the additive group of rationals.

- (a) Prove that every finitely generated subgroup of \mathbb{Q} is cyclic.
- (b) Prove that if G is a group with center Z(G) such that G/Z(G) is isomorphic to a subgroup of \mathbb{Q} , then G is abelian.
- (c) Prove that no non-trivial subgroup of \mathbb{Q} can be isomorphic to the full group of automorphisms of a group.

Problem 3. Let R be a quadratic integer $\mathbb{Z}[\sqrt{-5}]$. Let $I = (2, 1 + \sqrt{-5})$ be an ideal of R.

- (a) Is I a principal ideal in $\mathbb{Z}[\sqrt{-5}]$? Justify your answer.
- (b) Is $I^2 = II$ a principal ideal in $\mathbb{Z}[\sqrt{-5}]$ Justify your answer.

Problem 4. Let *R* be a commutative ring with identity. If *I* is an ideal of *R*, then $\sqrt{I} = \{r \in R : r^n \in I \text{ for some positive integer } n\}$. A proper ideal *I* is called a primary ideal if whenever $ab \in I$ we have either $a \in I$ or $b \in \sqrt{I}$.

- (a) Prove that if I is a primary ideal, then \sqrt{I} is a prime ideal.
- (b) Is (4, x) a prime ideal in $\mathbb{Z}[x]$? Explain.
- (c) Is (4, x) a primary ideal in $\mathbb{Z}[x]$? Explain.