Graduate Preliminary Examination

Algebra I

22.9.2004; 3 hours

Problem 1. Let p be a prime number. If G is an infinite p-group such that every proper non-trivial subgroup of G has order p, prove that:
(a) $p>2$;
(b) G must be a simple group.
(Recall that a group G is called simple if it has no non-trivial normal subgroup.)
Problem 2. Let \mathbb{Q} be the additive group of rationals.
(a) Prove that every finitely generated subgroup of \mathbb{Q} is cyclic.
(b) Prove that if G is a group with center $Z(G)$ such that $G / Z(G)$ is isomorphic to a subgroup of \mathbb{Q}, then G is abelian.
(c) Prove that no non-trivial subgroup of \mathbb{Q} can be isomorphic to the full group of automorphisms of a group.
Problem 3. Let R be a quadratic integer $\mathbb{Z}[\sqrt{-5}]$. Let $I=(2,1+\sqrt{-5})$ be an ideal of R.
(a) Is I a principal ideal in $\mathbb{Z}[\sqrt{-5}]$? Justify your answer.
(b) Is $I^{2}=I I$ a principal ideal in $\mathbb{Z}[\sqrt{-5}]$ Justify your answer.

Problem 4. Let R be a commutative ring with identity. If I is an ideal of R, then $\sqrt{I}=\left\{r \in R: r^{n} \in I\right.$ for some positive integer $\left.n\right\}$. A proper ideal I is called a primary ideal if whenever $a b \in I$ we have either $a \in I$ or $b \in \sqrt{I}$.
(a) Prove that if I is a primary ideal, then \sqrt{I} is a prime ideal.
(b) Is $(4, x)$ a prime ideal in $\mathbb{Z}[x]$? Explain.
(c) Is $(4, x)$ a primary ideal in $\mathbb{Z}[x]$? Explain.

