1. Determine all groups with exactly three distinct subgroups.

2. Let A be an abelian group denoted additively. Let ϕ be an endomorphism of A. Show that if ϕ is nilpotent, then $1 + \phi$ is an automorphism of A.

 Hint: Consider the factorization of $1 + \phi^n$ (with n odd) in the ring $\text{End} A$. Note that 1 means the identity map of A.

3. A ring R is called **radical** if for every $x \in R$, there exists $y \in R$ such that $x + y + xy = 0$.

 a) Let R be a ring. If every element of R is nilpotent, then show that R is radical.

 b) Show that $R = \left\{ \frac{2x}{2y + 1} \bigg| x, y \in \mathbb{Z} \text{ such that } (2x, 2y + 1) = 1 \right\}$ is a radical ring.

 c) Prove or disprove: In a radical ring every element is nilpotent.

4. Let R be a commutative ring with identity 1. A subset S of R is called a multiplicative set if it is closed under multiplication, contains 1, and does not contain the zero element.

 a) Prove that an ideal I of R is prime if and only if there is a multiplicative set S such that I is maximal among ideals disjoint from S.

 b) Prove that the set of all nilpotent elements of R equals the intersection of all the prime ideals of R.

 Hint: If s is not nilpotent, then $\{1, s, s^2, \cdots\}$ is a multiplicative set.