METU MATHEMATICS DEPARTMENT GRADUATE PRELIMINARY EXAMINATION ALGEBRA I, SEPTEMBER 2015

SEPTEMBER 28, 2015

- 1.a) Show that the alternating group A_n has no proper subgroup of index less than n, provided that $n \geq 5$. (Hint: Assume that such a subgroup H exits and then consider the action of A_n on the left cosets of H in A_n .)
- b) Use Part (a) to prove that S_n has no proper subgroup of index less than n other than A_n , provided that $n \geq 5$.
- **2.a)** Let p,q be primes with $p \ge q^2$ and G be group of order pq^2 . Prove that G has a normal Sylow p-subgroup.
- b) In addition to the assumptions in Part (a) assume further that the greatest common divisor $(q^2, p-1) = 1$. Show that the group in Part (a) is abelian.
 - 3.a) Show that the map

$$f: \mathbb{C} \longrightarrow M_2(\mathbb{R}), \qquad f(a+ib) = \left[\begin{array}{cc} a & -b \\ b & a \end{array} \right],$$

is an injective ring homomorphism, where $M_2(\mathbb{R})$ is the ring of 2x2-real matrices.

- b) Is the image an ideal in $M_2(\mathbb{R})$? Why?
- 4) Let R be the ring of continuous functions on the interval [0,1].
- a) What are the units of the ring R?
- b) For any $a \in [0,1]$, let I_a be the set of elements $f \in R$ with f(a) = 0. Show that I_a is a maximal ideal in R.
- c) Show that the set of elements $f \in R$ with f(1/2) = 0 = f(1/4) is an ideal. Is it prime?
 - d) Show that any maximal ideal of R is of the form I_a , for some $a \in [0,1]$.