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1.a) Show that the alternating group A, has no proper subgroup of index less than
n, provided that n > 5. (Hint: Assume that such a subgroup H exits and then
consider the action of A, oxn the left cosets of H in Ay}

b) Use Part (a) to prove that S, has no proper subgroup of index less than =
other than A,, provided that n > 5.

2.a) Let p,q be primes with p = g° and G be group of order pg®. Prove that
G has a normal Sylow p-subgroup.

b) In addition to the assumptions in Part (a) assume further that the greatest
common divisor (g%, p— 1) = 1. Show that the group in Part (a) is abelian.

3.a} Show that the map

P m®,  ferd)= 5 )

is an injective ring homomorphism, where M»(R) is the ring of 2z2-real matrices.

b) Is the image an ideal in  M,(R)7 Why?

4) Let R be the ring of continuous functions on the interval 0,1}.
a) What are the units of the ring R7

b) For any a € [0,1], let I, be the set of elements f € R with f(a) = 0. Show
that I, is a maximal ideel in R.

¢) Show that the set of elements f € R with f(1/2) = 0= f(1/4) is an ideal. Is
it prime?

d) Show that eny maximal ideal of R is of the form I, for some a € {0, 1.




