METU - Department of Mathematics Graduate Preliminary Exam Algebra - I September 25, 2017

- Duration: 3 hours.
- Please write your solution for each question on a separate page.
- You can use any statement given below in the solution of any question even if you cannot prove that given statement.

Question 1.(7+7+8+8 pts.)a) For a group G and any $g \in G$, define $\phi_g : G \to G$ by $\phi_g(x) = gxg^{-1}$ for all $x \in G$. Show that $Inn(G) = \{\phi_g | g \in G\}$ is a normal subgroup of Aut(G) (the group of automorphisms of G).

- b) Show that Inn(G) is isomorphic to the quotient group G/Z(G) where $Z(G) = \{h \in G | hx = xh \text{ for all } x \in G\}$ is the center of G.
- c) Show that if G has order p^n for some prime p and $n \in \mathbb{Z}^+$, then Z(G) is non-trivial (has more than one element).
- d) For a p-group G as in part (c), if N is a normal subgroup of order p of G, then $N \subset Z(G)$.

Question 2.(7+8+8+7 pts.)a) Show that if H is a non-abelian group of order p^3 , then |Z(H)| = p and Z(H) = H' where H' is the commutator subgroup of H generated by all elements of the form $xyx^{-1}y^{-1}$ for $x,y \in H$.

- b) Let G be a group of order p^3q^3 where p>q>2 are primes such that p does not divide q^2+q+1 . Show that G is not simple.
- c) For G as in part (b), show that G has normal subgroups N_1 , N_2 and N_3 such that $N_1 \leq N_2 \leq N_3 \leq G$ and $[G:N_3] = [N_3:N_2] = [N_2:N_1] = q$. Is G solvable? Explain.
- d) Give an example to show that such a group G as in part (b) need not be nilpotent (Hint: use the fact that (without proving it) there exists a non-abelian group K of order 21, and consider the center of K).

Question 3.(10 pts.) Prove that a finite ring with more than one element and no zero-divisors is a division ring.

Question 4.(7+7 pts.) For an ideal I of a commutative ring R, the radical of I is defined as $rad(I) = \{r \in R | r^n \in I \text{ for some } n \in \mathbb{Z}^+\}$.

- a) Show that rad(I) is an ideal of R which contains I.
- b) Show that rad(I) is contained in any prime ideal P of R such that $I \subset P$.

Question 5.(8+8 pts.)a) Show that if $f, g \in \mathbb{Z}_p[x]$ (p is a prime) such that $f(x) = g(x^p)$ and deg $g \ge 1$, then f is reducible in $\mathbb{Z}_p[x]$.

b) For a field F explain why F[x, y] is a unique factorization domain and show that it is not a principal ideal domain.