METU - Department of Mathematics
Graduate Preliminary Exam
Algebra - 1
September 25, 2017

• Duration: 3 hours.
• Please write your solution for each question on a separate page.
• You can use any statement given below in the solution of any question even if you cannot prove that given statement.

Question 1. (7+7+8+8+8 pts.) a) For a group G and any $g \in G$, define $\phi_g : G \to G$ by $\phi_g(x) = gxg^{-1}$ for all $x \in G$. Show that $\text{Inn}(G) = \{\phi_g|g \in G\}$ is a normal subgroup of $\text{Aut}(G)$ (the group of automorphisms of G).
b) Show that $\text{Inn}(G)$ is isomorphic to the quotient group $G/Z(G)$ where $Z(G) = \{h \in G|hx = xh \text{ for all } x \in G\}$ is the center of G.
c) Show that if G has order p^n for some prime p and $n \in \mathbb{Z}^+$, then $Z(G)$ is non-trivial (has more than one element).
d) For a p-group G as in part (c), if N is a normal subgroup of order p^m of G, then $N \subseteq Z(G)$.

Question 2. (7+8+8+7+7 pts.) a) Show that if H is a non-abelian group of order p^3, then $|Z(H)| = p$ and $Z(H) = H'$ where H' is the commutator subgroup of H generated by all elements of the form $xyz^{-1}y^{-1}$ for $x, y \in H$.
b) Let G be a group of order p^3q^3 where $p > q > 2$ are primes such that p does not divide $q^2 + q + 1$. Show that G is not simple.
c) For G as in part (b), show that G has normal subgroups N_1, N_2 and N_3 such that $N_1 \leq N_2 \leq N_3 \leq G$ and $[G : N_3] = [N_3 : N_2] = [N_2 : N_1] = q$. Is G solvable? Explain.
d) Give an example to show that such a group G as in part (b) need not be nilpotent (Hint: use the fact that (without proving it) there exists a non-abelian group K of order 21, and consider the center of K).

Question 3. (10 pts.) Prove that a finite ring with more than one element and no zero-divisors is a division ring.

Question 4. (7+7 pts.) For an ideal I of a commutative ring R, the radical of I is defined as $\text{rad}(I) = \{r \in R|p^n \in I \text{ for some } n \in \mathbb{Z}^+\}$.
a) Show that $\text{rad}(I)$ is an ideal of R which contains I.
b) Show that $\text{rad}(I)$ is contained in any prime ideal P of R such that $I \subseteq P$.

Question 5. (8+8 pts.) a) Show that if $f, g \in \mathbb{Z}_p[x]$ (p is a prime) such that $f(x) = g(x^p)$ and $\deg g \geq 1$, then f is reducible in $\mathbb{Z}_p[x]$.
b) For a field F explain why $F[x, y]$ is a unique factorization domain and show that it is not a principal ideal domain.