Graduate Preliminary Examination
Algebra 1, November 2020

1. Prove that if G is a group of order 385 then the center of G contains a Sylow 7-subgroup of G and a Sylow 11-subgroup is normal in G.

2. Let G be a group and H be a subgroup of G. Let $C_G(H)$ be the centralizer of H and let $N_G(H)$ be the normalizer of H.
 (a) For each $a \in N_G(H)$ define a function by $f_a : H \to G$ by $f_a(h) := aha^{-1}$. Show that f_a is in $Aut(H)$.
 (b) Show that the map $f_a : N_G(H) \to Aut(H)$ is a group homomorphism.
 (c) Show that the factor group $N_G(H)/C_G(H)$ is isomorphic to a subgroup of $Aut(H)$.

3. Let R be the ring $\mathbb{Z}[\sqrt{-5}]$ and let p be the ideal $(3, 1 + \sqrt{-5})$ in R.
 (a) Show that p is a prime ideal.
 (b) Show that p is not a principal ideal. Is p^2 principal?

4. Let R be a commutative ring with unity. A non-zero ideal I of R is said to be a minimal ideal if there does not exist an ideal J of R such that $\{0\} \subsetneq J \subsetneq I$.
 (a) Suppose that K is a minimal ideal of R such that
 \[
 K^2 = \{kl \mid k, l \in K\} \neq \{0\}
 \]
 Show that there exist non-zero $e, k \in K$ such that $ek = k$.
 (b) Let e, k, K be as in part (a). First show that the set
 \[
 Ann_K(k) = \{x \in K : xk = 0\}
 \]
 is an ideal of R contained in K. Then deduce that e is an idempotent element, that is, $e^2 = e$.
 (c) Suppose that R is an integral domain with a minimal ideal. Show that R is a field.