Graduate Preliminary Examination

Algebra I

18.2.2004 3 hours

- Problem 1. (a) Let G be a finite nilpotent group. Show that if m divides the order of G, then G has a subgroup of order m.
 - (b) Give an example of a finite group G such that m divides the order of G but G does not have a subgroup of order m.

Problem 2. Let Σ be the set of Sylow *p*-subgroups of some finite group, $|\Sigma| \geq 2$ and let $P \in \Sigma$. Clearly P acts on Σ by conjugation.

- (a) Find the fix points of P in the set Σ \ {P} if there are any.
- (b) Find the length of the orbits of P containing an element of $\Sigma \setminus \{P\}$.

Problem 3. Here \mathbb{Q} is the ring of rational numbers. Let p be the polynomial $X^3 + 9X + 6$ over \mathbb{Q} , and let θ be a root of p.

- (a) Write θ³, θ⁴ and θ⁵ as Q-linear combinations of 1, θ and θ².
- (b) Is 1 + θ invertible in Q[X]/(p)? If it is, find the inverse; if it is not, explain why.

Problem 4. Let R be a countable integral domain. Prove that R is a principal ideal domain, provided that the following two conditions hold:

- Any two non-zero elements a and b of R have a greatest common divisor, which can be written in the form ra + sb for some r and s in R.
- If a₁, a₂,... are nonzero elements of R such that a_{n+1} | a_n for all positive integers n, then there is a positive integer N, such that if n ≥ N, then a_n is a unit times a_N.