## METU - Department of Mathematics Graduate Preliminary Exam

## Algebra I

February, 2009

Duration: 180 min.

- 1. Given a group G, we can construct a chain  $G_1 \xrightarrow{\pi_1} G_2 \xrightarrow{\pi_2} G_3 \xrightarrow{\pi_3} G_4 \xrightarrow{\pi_4} \cdots$ , where  $G_1 = G$  and  $G_{n+1} = \operatorname{Aut}(G_n)$ , and  $\pi_n(g)(x) = gxg^{-1}$  for all g and x in  $G_n$ , for all positive integers n.
  - a) Show  $\pi_n(G_n) \leq G_{n+1}$  for all positive integers n.
- b) Assuming  $C(G) = \langle 1 \rangle$ , show that  $\pi_n$  is injective, and  $C_{G_{n+1}}(\pi_n(G_n)) = \langle 1 \rangle$  for all positive integers n.
- **2.** Let G be a finite group and p be the smallest prime divisor of |G|. Prove that if H is a subgroup of index p in G, then  $H \subseteq G$ .
- **3.** Let  $\Omega$  be a set, and for each i in  $\Omega$ , let  $K_i$  be a field. Then let R be the ring  $\prod_{i\in\Omega}K_i$ . Let  $\mathfrak{m}$  be a maximal ideal of R. If x is an element  $(x_i:i\in I)$  of R, define  $S(x)=\{i\in\Omega:x_i\neq 0\}$ .
- a) Show that, for all x and y in R, if  $\Omega$  is the *disjoint* union of S(x) and S(y), then exactly one of x and y is in m.
- b) Show that the homomorphism  $x \mapsto x/1$  from R to the localization  $R_{\mathfrak{m}}$  is surjective.
  - c) Find the kernel of the homomorphism in (b).
  - d) What kind of ring is  $R_{\rm m}$ ?
  - **4.** Let R be a ring and e be an idempotent in R, that is,  $e^2 = e \neq 0$ .
  - a) Show that eRe is a subring of R and e is the identity of eRe
- b) Show that if R is finite and contains no nonzero nilpotent elements, then we have eRe = eR.