1. Let G be a finite group and p be a prime number dividing $|G|$, and let $X = \{x \in G \mid x^p = 1\}$. Prove that $|X|$ is divisible by p.

(Hint: Let $P \in Syl_p G$. Consider the action of P on X by conjugation and verify that $X \cap C_G(P)$ is a subgroup of P.)

2. Let G be a finite group.
 a) Prove that $N_G(N_G(P)) = N_G(P)$ for each Sylow p-subgroup of G for a prime number p dividing $|G|$.
 b) Prove the implications (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) for the following:
 (i) G is nilpotent.
 (ii) H is properly contained in $N_G(H)$ for each proper subgroup H of G.
 (iii) Every Sylow p-subgroup of G is normal in G for a prime number p dividing $|G|$.
 (iv) G is the direct product of its Sylow subgroups.

3. Let R be a commutative ring with 1, and let \mathcal{S} be the set of all ideals of R in which every element is a zero divisor. Assume that $\mathcal{S} \neq \phi$.
 a) Prove that \mathcal{S} has maximal elements with respect to inclusion.
 b) Prove that every maximal element of \mathcal{S} with respect to inclusion is a prime ideal.
(c) Let D be the set of all zero divisors of R and P be a prime ideal of R. Prove that $P \cap D$ is a prime ideal of R and D is a union of prime ideals.

(d) Give an example of a commutative ring R with 1 such that D is not an ideal and describe the decomposition of D in your example as a union of prime ideals.

4. Let R be a commutative ring with 1, and let X be the set of prime ideals of R. For each subset S of R, let $V(S)$ denote the set of all prime ideals of R which contain S. Prove that

(a) If I is the ideal generated by S, then $V(S) = V(I)$.

(b) $V(0) = X$ and $V(1) = \phi$.

(c) If $(S_i)_{i \in I}$ is a family of subsets of R, then $V \left(\bigcup_{i \in I} S_i \right) = \bigcap_{i \in I} V(S_i)$.

(d) $V(P \cap Q) = V(PQ) = V(P) \cup V(Q)$ for any ideals P, Q of R.

(e) Suppose that R is Noetherian and let I be an ideal of R. Show that $V(I) = X$ if and only if $I^n = 0$ for some positive integer n.

2