GRADUATE PRELIMINARY EXAMINATION ALGEBRA I, FEBRUARY 2013

FEBRUARY 13, 2013

- **1.a.** Let p, q, r be distinct primes. Show that any group G of order $|G| = p^2q^2r^2$ is abelian if and only if it is nilponent.
 - 1.b. List all the nilpotent groups of order $p^2q^2r^2$, up to isomorphism.
- 1.c. Give an example of a nilpotent group of order $2^33^25^2$, which is not abelian.
- **2.a.** Let G be a finite group of order 105 and let n_p denote the number of Sylow p-subgroups of G, where $p \in \{3, 5, 7\}$. Show that we cannot have simultaneously $n_p > 1$, for all p. Conclude that G is not simple.
- 2.b. Show that any group G of order 105 has indeed a unique Sylow-7 subgroup. (Hint: If G does have not a normal subgroup of order 7, then show that it has a normal subgroup of order 15. In this case, a Sylow 7-subgroup acts on this subgroup of order 15, by conjugation. Next show that G is abelian, which yields a contradiction.)
- **2.c.** Is there any nonabelian group G of order 105? Explain your answer.
- **3.a.** Let R be a commutative ring with unity 1. If $I \subseteq R$ is an ideal then its radical is defined to be subset

$$\sqrt{I} \doteq \{x \in R \mid x^n \in I, \text{ for some } n \in \mathbb{N}\}.$$

Show that \sqrt{I} is an ideal of R.

- **3.b.** Prove that for any prime ideal $P \subseteq R$ its radical is equal to itself: $P = \sqrt{P}$.
- **4.a.** Let $f: R \to S$ be a surjective ring homomorphism, where R is a PID. Show that S is an integral domain if and only if S is a field.
- **4.b.** Let F be any field. Show that any ring homomorphism $f: F[x] \to \mathbb{Z}$ is trivial (i.e., it is the zero homomorphism).
- **4.c.** Construct infinitely many distinct ring homomorphisms from $\mathbb{Q}[x]$ to \mathbb{Q} .