METU Mathematics Department Graduate Preliminary Examination Algebra I, January 2014

- 1. Prove or disprove the following claims:
 - No group can have exactly two subgroups of index two.
 - The abelian group \mathbb{Q}/\mathbb{Z} is finitely generated.
- 2. Let H be a proper subgroup of a finite group G. Show that

$$G \neq \bigcup_{g \in G} gHg^{-1}.$$

- 3. Let R be a principal ideal domain and let $\mathfrak{p} \subset R$ be a non-zero prime ideal. Show that the localization $R_{\mathfrak{p}}$ is a principal ideal domain and has a unique irreducible element, up to associates.
- 4. Let $R = \mathbb{Z}[\sqrt{-5}]$ and let $\mathfrak{a} = (3, 1 + \sqrt{-5})$.
 - $\bullet\,$ Show that $\mathfrak a$ is not a principal ideal.
 - Show that $a^2 = aa$ is a principal ideal and find a generator.