(1) Let \(\{ G_i \mid i \geq 1 \} \) be a family of finite groups and let \(G \) be the weak (restricted) direct product of this family.

(a) (15 Points) Show that every finitely generated subgroup of \(G \) is finite.

(b) (10 Points) Show that this may not be true for the direct product of such a family.

(2) (a) (5 Points) Let \(G \) be a group and \(H \subseteq C(G) \) be subgroup of \(G \). Show that if \(G/H \) is cyclic then \(G \) is abelian. (Here, \(C(G) \) denotes the center of the group \(G \)).

(b) (10 Points) Show that if \(\text{Aut}(G) \) is cyclic, then \(G \) is abelian. (Here, \(\text{Aut}(G) \) denotes the automorphism group of \(G \)).

(c) (10 Points) Give an example of an abelian group \(G \) such that \(\text{Aut}(G) \) is not abelian.

(3) (a) (10 Points) Let \(R \) be a principal ideal domain. Show that there is no infinite chain of ideals such that

\[
I_1 \subset I_2 \subset I_3 \subset \cdots
\]

(b) (15 pts) Let \(R \) be a unique factorization domain. Show that for any infinite chain of principal ideals of \(R \),

\[
(a_1) \subset (a_2) \subset (a_3) \cdots
\]

there is \(n \geq 1 \), such that \((a_i) = (a_n) \) for \(i \geq n \).

(4) Let \(R = \{ f(x) \in \mathbb{Q}[x] \mid f(0) \in \mathbb{Z} \} \subseteq \mathbb{Q}[x] \).

(a) (5 Points) Show that \(R \) is an integral domain.

(b) (10 Points) Consider the following ideals of \(R \):

\[
I = \{ f(x) \in R \mid f(0) = 0 \}, \quad J = (x), \quad K = (2)
\]

Which of \(I, J, K \) are prime/maximal ideals? Explain.

(c) (10 Points) Is \(R \) a principal ideal domain? Explain.