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Q1 (20 pts) Let P be a Sylow p-subgroup of a finite group G, and let Q be any p-subgroup of G. Then
show that

Q ∩ P = Q ∩NG(P ).

Q2 (20 pts) If N is a normal subgroup of the finite group G and gcd(|N |, [G : N ]) = 1, then prove
that N is the unique subgroup of G of order |N |.

Q3 (20 pts) If p and q are primes then show that any group of order p2q is solvable.

Q4 (20 pts) A ring R is called local if it has a unique maximal ideal.

(a) Prove that a commutative ring R with unity is local if and only if the set of non-unit elements of
R is an ideal of R.

(b) Let R be a commutative ring with identity 1R and suppose that M is a maximal ideal of R. Prove
that if 1R + M consists of units, then R is a local ring.

Q5 (20 pts) Suppose R is a commutative ring with identity. If I is an ideal in R[x] and m is a
nonnegative integer denote by I(m) the set of all leading coefficients of polynomials of degree m in I,
together with 0.

(a) Show that I(m) is an ideal in R.

(b) Show that I(m) ⊆ I(m + 1) for all m.

(c) If J is an ideal with I ⊆ J show that I(m) ⊆ J(m) for all m.
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