Graduate Preliminary Examination

Algebra II

22.9.2004: 3 hours

Problem 1. Let $K_{0}=\mathbb{F}_{11}[X] /\left(X^{2}+1\right)$ and $K_{1}=\mathbb{F}_{11}[Y] /\left(Y^{2}+2 Y+2\right)$.
(a) Show that the K_{i} are fields for $i=0,1$.
(b) Find the orders of the K_{i} for $i=0,1$.
(c) Either exhibit an isomorphism of K_{0} and K_{1}, or show that they are not isomorphic.
Problem 2. Show that the sum of all elements of a finite field is zero, except for \mathbb{F}_{2}.
Problem 3. Let L / K be a field-extension, and let α be algebraic over K with minimal polynomial f. Let $M=K(\alpha) \otimes_{K} L$. We know that M is a vector-space over L.
(a) Exhibit an embedding of L in M (as vector-spaces over L).
(b) Exhibit an embedding ι of L in M and a multiplication - on M such that the following conditions hold:

- M is a commutative ring with identity;
- ι is a ring-homomorphism;
- if $m \in M$ and $\ell \in L$, then $\iota(\ell) \cdot m$ is the product ℓm given by the vector-space structure.
(c) Show that $L[X] /(f)$ and $K(\alpha) \otimes_{K} L$ are isomorphic as rings.

Problem 4. Let R be a ring with 1 . If M is an R-module, the uniform dimension of $M(\operatorname{ud} M)$ is the largest integer n such that there is a direct sum $M_{1} \oplus \ldots \oplus M_{n} \subseteq M$ with all the M_{i} non-zero. If no such integer exists then we say that ud $M=\infty$. If $M \subseteq N$ are R-modules, M is said to be essential in N if every non-zero submodule of N has non-zero intersection with M. Suppose the ud $M<\infty$ and $M \subseteq N$. Prove that M is essential in N if and only if ud $M=\operatorname{ud} N$

