PRELIMINARY EXAMINATION ALGEBRA II

Fall 2005

September 16^{th} , 2005

Duration: 3 hours

- **1.** Let $f(x) = x^3 2x 2 \in \mathbb{Q}[x]$. Let $K = \mathbb{Q}(\alpha)$ where α is a real root of f, and let F be the Galois closure of the extention K/\mathbb{Q} .
 - a) Determine the group of \mathbb{Q} -automorphisms of K.
 - **b)** Determine the Galois group $G(F/\mathbb{Q})$.
 - c) Determine the Galois group G(F/K).
- **2.** Let K be a field of characteristic p (where p is a prime number). Let $K^p = \{b^p | b \in K\}$.
 - a) Show that K^p is a subfield of K and K/K^p is an algebraic extension.
 - **b)** Let $a \in K$, $a \notin K^p$. Prove that $[K^p(a) : K^p] = p$.
- **3.** Let R be a principal ideal domain, M a free R-module, and S a submodule of M. S is called a pure submodule if

whenever $ay \in S$ (with $a \in R \setminus \{0\}, y \in M$), then $y \in S$.

- a) Show that $\{0\}$ and R are the only pure submodules of R, considered as an R-module)
- **b)** Find a proper, nontrivial pure submodule of $R \oplus R$ (considered as an R-module).
- c) Let N be a torsion-free R-module and $\varphi: M \to N$ be an R-module homomorphism. Prove that $Ker\varphi$ is a pure submodule of M.
- **4.** Let R be a commutative ring with identity. Prove that every submodule of R is free iff $R = \{0\}$ or R is a principal ideal domain. (Warning: To prove that R is a PID, you have to show R is an integral domain first.)