# PRELIMINARY EXAMINATION <br> ALGEBRA II 

Fall 2005
September $16^{\text {th }}, 2005$

## Duration: 3 hours

1. Let $f(x)=x^{3}-2 x-2 \in \mathbb{Q}[x]$. Let $K=\mathbb{Q}(\alpha)$ where $\alpha$ is a real root of $f$, and let $F$ be the Galois closure of the extention $K / \mathbb{Q}$.
a) Determine the group of $\mathbb{Q}$-automorphisms of $K$.
b) Determine the Galois group $G(F / \mathbb{Q})$.
c) Determine the Galois group $G(F / K)$.
2. Let $K$ be a field of characteristic $p$ (where $p$ is a prime number). Let $K^{p}=\left\{b^{p} \mid b \in K\right\}$.
a) Show that $K^{p}$ is a subfield of $K$ and $K / K^{p}$ is an algebraic extension.
b) Let $a \in K, a \notin K^{p}$. Prove that $\left[K^{p}(a): K^{p}\right]=p$.
3. Let $R$ be a principal ideal domain, $M$ a free $R$-module, and $S$ a submodule of M. $S$ is called a pure submodule if
whenever $a y \in S$ (with $a \in R \backslash\{0\}, y \in M$ ), then $y \in S$.
a) Show that $\{0\}$ and $R$ are the only pure submodules of $R$, considered as an $R$-module)
b) Find a proper, nontrivial pure submodule of $R \oplus R$ (considered as an $R$ module).
c) Let $N$ be a torsion-free $R$-module and $\varphi: M \rightarrow N$ be an $R$-module homomorphism. Prove that $\operatorname{Ker} \varphi$ is a pure submodule of $M$.
4. Let $R$ be a commutative ring with identity. Prove that every submodule of $R$ is free iff $R=\{0\}$ or $R$ is a principal ideal domain. (Warning: To prove that $R$ is a PID, you have to show $R$ is an integral domain first.)
