TMS

Fall 2009

ABGEBRA II

- 1. Let R be a commutative ring with identity, and A, B, C_1, \dots, C_n be R-modules.
 - a) Assume A is a submodule of B, and B satisfies the ACC on its submodules. Show that B/A satisfies the ACC on its submodules.
 - b) Assume C_1, \dots, C_n satisfy the ACC on their submodules. Show that their direct sum also satisfies the ACC on its submodules.
 - c) If the ring R satisfies the ACC on its ideals, then show that every finitely generated Rmodule satisfies the ACC on its submodules.
- 2. Let M be a left R-module.
 - a) Prove that M is a simple module if and only if M = Rm for all nonzero $m \in M$.
 - b) Prove that M is simple if and only if $M \cong R/I$ for a maximal left ideal $I \subseteq R$.
 - c) Prove that if M is simple, then $\operatorname{End}_R(M)$ is a division ring.
- 3. Let K be a subfield of a finite field L. Describe (as precisely as possible) the group of automorphisms of L when it is considered as:
 - a) a field
 - b) a vector space over K,
 - c) an additive group
- 4. Let $f(x) = x^5 2 \in \mathbb{Q}[x]$.
 - a) Find the order of the Galois group G_f of f(x) over \mathbb{Q} .
 - b) Show that G_f is isomorphic to the group H given by generators a of order 5 and b of order
 - 4, with the relation $ba = a^2b$.