M.E.T.U
 Department of Mathematics
 Preliminary Exam - Sep. 2011
 ALGEBRA II

Duration : 3 hr .
Each question is 25 pt.

1. Let n be a positive integer and F be a field of characteristic p with $p \nmid n$.
Let $f(x)=x^{n}-a$ for some $0 \neq a \in F$ and E be a splitting field for $f(x)$ over F.
a) Show that $f(x)$ has no multiple roots (that is $f(x)$ has n distinct roots.)
b) Show that E contains a primitive n-th root of unity ϵ.
c) Assume that $\epsilon \in F$. Show that all irreducible factors of factors of $f(x)$ in $F[x]$ have the same degree and $[E: F]$ divides n.
2. Let α be an element of $\mathbb{C}-\overline{\mathbb{Q}}$ where $\overline{\mathbb{Q}}$ is the algebraic closure of \mathbb{Q} in \mathbb{C}.
a) Show that $\mathbb{Q}(\alpha)$ is the field of fractions of the integral domain $\mathbb{Q}[\alpha]$. (Hint : Use the homomorphism $\mathbb{Q}[x] \rightarrow \mathbb{C}, x \mapsto \alpha$).
b) Show that

- each matrix $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in G L(2, \mathbb{Q})$ defines an automorphism

$$
\Phi_{M}: \mathbb{Q}(\alpha) \longrightarrow \mathbb{Q}(\alpha) \text { given by } \alpha \mapsto \frac{a \alpha+b}{c \alpha+d}
$$

- and we obtain a group homomorphism
$\Psi: G L(2, \mathbb{Q}) \longrightarrow \operatorname{Aut}(\mathbb{Q}(\alpha)), \Psi(M)=\Phi_{M}$.
c) True or false? Explain. Ψ in (b) is an isomorphism.

3. Let M be a module over a commutative ring R satisfying the descending chain condition.
Suppose that f is an endomorphism of M. Show that f is an isomorphism if and only if f is a monomorphism.
4. Let R be commutative ring with unity and M be an R-module. For $x \in M$ we define

$$
\operatorname{Ann}(x)=\{r \in R: r x=0\}
$$

and we set $T(M)=\{x \in M: \operatorname{Ann}(x) \neq 0\}$.
a) Show that

- If $x \neq 0$, then $\operatorname{Ann}(x)$ is a proper ideal in R.
- If for each maximal ideal \mathbf{p} in R there exists some $r \in \operatorname{Ann}(x)$, $r \notin \mathbf{p}$, then $x=0$.
b) Let R be an integral domain with field of fractions F. Show that
- $T(M)$ is a submodule of M.
- $T(M)$ is in the kernel of the map $M \rightarrow M \otimes_{R} F, \quad m \mapsto m \otimes 1$.
- $T(M)=\{0\}$ if M is a flat R-module.
c) True or false ? Prove the statement or give a counter example.

For any R and an R-module $M, T(M)$ is a submodule of M.

