M.E.T.U

Department of Mathematics Preliminary Exam - Sep. 2011 ALGEBRA II

Duration : 3 hr.

Each question is 25 pt.

1. Let n be a positive integer and F be a field of characteristic p with $p \not| n$.

Let $f(x) = x^n - a$ for some $0 \neq a \in F$ and E be a splitting field for f(x) over F.

a) Show that f(x) has no multiple roots (that is f(x) has n distinct roots.)

b) Show that E contains a primitive *n*-th root of unity ϵ .

c) Assume that $\epsilon \in F$. Show that all irreducible factors of factors of f(x) in F[x] have the same degree and [E:F] divides n.

2. Let α be an element of $\mathbb{C} - \overline{\mathbb{Q}}$ where $\overline{\mathbb{Q}}$ is the algebraic closure of \mathbb{Q} in \mathbb{C} .

a) Show that $\mathbb{Q}(\alpha)$ is the field of fractions of the integral domain $\mathbb{Q}[\alpha]$. (Hint : Use the homomorphism $\mathbb{Q}[x] \to \mathbb{C}, \ x \mapsto \alpha$).

- **b**) Show that
 - each matrix $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL(2, \mathbb{Q})$ defines an automorphism

$$\Phi_M : \mathbb{Q}(\alpha) \longrightarrow \mathbb{Q}(\alpha)$$
 given by $\alpha \mapsto \frac{a\alpha + b}{c\alpha + d}$

• and we obtain a group homomorphism $\Psi: GL(2, \mathbb{Q}) \longrightarrow \operatorname{Aut}(\mathbb{Q}(\alpha)), \ \Psi(M) = \Phi_M.$

c) True or false? Explain.

 Ψ in (b) is an isomorphism.

3. Let M be a module over a commutative ring R satisfying the descending chain condition.

Suppose that f is an endomorphism of M. Show that f is an isomorphism if and only if f is a monomorphism.

4. Let R be commutative ring with unity and M be an R-module. For $x \in M$ we define

$$\operatorname{Ann}(x) = \{r \in R : rx = 0\}$$

and we set $T(M) = \{x \in M : \operatorname{Ann}(x) \neq 0\}.$

a) Show that

- If $x \neq 0$, then Ann(x) is a **proper ideal** in *R*.
- If for each maximal ideal \mathbf{p} in R there exists some $r \in \text{Ann}(x)$, $r \notin \mathbf{p}$, then x = 0.

b) Let R be an integral domain with field of fractions F. Show that

- T(M) is a submodule of M.
- T(M) is in the kernel of the map $M \to M \otimes_R F$, $m \mapsto m \otimes 1$.
- $T(M) = \{0\}$ if M is a **flat** R-module.

c) True or false ? Prove the statement or give a counter example.

For any R and an R-module M, T(M) is a submodule of M.