METU MATHEMATICS DEPARTMENT ALGEBRA II SEPTEMBER 2012 - TMS EXAM

- **1.** Let $f(x) = x^6 + 3 \in \mathbb{Q}[x]$, and let α be a root of f(x) in \mathbb{C} .
- a) Find the splitting field E of f(x) over \mathbb{Q} .
- b) Find the degree of the extension E over \mathbb{Q} .
- c) Find the automorphism group G of E over \mathbb{Q} . Find the lattice of subgroups of G.
- d) Choose one of nontrivial proper subgroups of G and find the intermediate field corresponding to this subgroup explicitly.
- **2.** a) Prove that for a finite field F of characteristic p, the map $u \mapsto u^p$ is an automorphism of F.
 - b) For every integer n, show that the map $u \mapsto u^4 + u$ is an endomorphism of the additive group of the finite field \mathbb{F}_{2^n} , and determine the size of the kernel and image of this endomorphism.
- **3.** Let R be a ring with 1, and let N be a submodule of an R-module M.
- a) Prove that M is torsion if and only if N and M/N are both torsion.
- b) Prove that if N and M/N are both torsion-free, then M is torsion-free. Give an example to show that the converse of this statement is false.
- c) Prove that a free module over a PID is torsion-free. Give an eample to show that the converse of this statement is false.
- **4.** Let R be a ring with 1 and let M, N be R-modules.
- a) Prove that if M and N are both free, then $M \otimes_R N$ is free.
- b) Let $f: M \to N$ be an R-homomorphism and let W be an R-module. Show that if f is surjective, then the induced map $f \otimes 1_W : M \otimes_R W \to N \otimes_R W$ is surjective. Give an example of M, N, W and an injective map $f: M \to N$ to show that the induced map $f \otimes 1_W$ is not injective.