METU-MATHEMATICS DEPARTMENT GRADUATE PRELIMINARY EXAMINATION ALGEBRA II, SEPTEMBER 2013

SEPTEMBER 17, 2013

- 1) Suppose that f(x) is irreducible in F[x] and K is a Galois extension of F. Show that all irreducible factors of f(x) in K[x] have the same degree.
- **2.a)** Find the minimal polynomial of $i\sqrt{5} + \sqrt{2} \in \mathbb{C}$ over the rational numbers. Determine the Galois group of the splitting field of the minimal polynomial over the field of rational numbers.
- **2.b)** Find a primitive element over the field of rational numbers for the extension field $K = \mathbb{Q}(\sqrt{5}, \sqrt[3]{4})$.
- **3.a)** Suppose R is a commutative ring and M is an R-module. A submodule N is called pure if $rN = rM \cap N$, for all $r \in R$. Show that any direct summand of M is pure.
- 3.b) If M is torsion free and N is a pure submodule show that M/N is torsion free.
- 3.c) If M/N is torsion free show that N is pure.
- **4.a)** Prove that any finitely generated projective module M over a PID R is free.
- **4.b)** Is \mathbb{Z} -module of rational numbers \mathbb{Q} projective? What about the \mathbb{Q} -module of rational numbers \mathbb{Q} ?