METU MATHEMATICS DEPARTMENT GRADUATE PRELIMINARY EXAMINATION ALGEBRA II, SEPTEMBER 2015

SEPTEMBER 29, 2015

- **1.a)** Let R be a commutative ring with unity. A module P over R is called projective, if for every surjective module homomorphism $f: N \to M$ and every module homomorphism $g: P \to M$, there exists a homomorphism $h: P \to N$ such that $f \circ h = g$. Prove that every free R-module P is projective.
- b) Show more generally that an R-module P is projective if and only if there is an R-module N such that $P \oplus N$ is a free R-module.
- c) Show that a finitely generated projective \mathbb{Z} -module P is indeed free. (This part of the question can be answered independently from the previous parts.)
- 2) Let A be a commutative ring with unity and M is a finitely generated A-module. Assume that $f: M \to A^n$ is a surjective homomorphism. Show that $\ker(f)$ is also finitely generated. (Hint: Choose a basis $\{e_1, \dots, e_n\}$ for A^n , and let $m_i \in M$ with $f(m_i) = e_i$. Show that M is isomorphic to the direct sum of $\ker(f)$ and the submodule generated by m_1, \dots, m_n)

Is it true that a submodule of a finitely generated module is finitely generated?

- **3.a)** Find the splitting field K of the polynomial $f(x) = x^3 2 \in \mathbb{Q}[x]$.
- b) Determine the Galois group of the extension K/\mathbb{Q} .
- c) Show that $\sqrt[3]{2}$ cannot be written as a \mathbb{Q} -linear combination of n^{th} roots of unity for any positive integer n.
- **4.a)** Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial and let $G = Gal(K : \mathbb{Q})$ be the Galois group of its splitting field K. Considering G as a subgroup of S_5 , the symmetric group on five letters, show that G contains a five cycle.
- b) Assume further that exactly three roots of f(x) are real. Show that the Galois group G contains a transposition.
- c) Is the polynomial f(x) solvable by radicals? (Hint: It is a fact that any subgroup of S_5 that contains a 5-cycle and a transposition is equal to S_5).