1.a) Let \(R \) be a commutative ring with unity. A module \(P \) over \(R \) is called projective, if for every surjective module homomorphism \(f : N \to M \) and every module homomorphism \(g : P \to M \), there exists a homomorphism \(h : P \to N \) such that \(f \circ h = g \). Prove that every free \(R \)-module \(P \) is projective.

b) Show more generally that an \(R \)-module \(P \) is projective if and only if there is an \(R \)-module \(N \) such that \(P \oplus N \) is a free \(R \)-module.

c) Show that a finitely generated projective \(\mathbb{Z} \)-module \(P \) is indeed free. (This part of the question can be answered independently from the previous parts.)

2) Let \(A \) be a commutative ring with unity and \(M \) is a finitely generated \(A \)-module. Assume that \(f : M \to A^n \) is a surjective homomorphism. Show that \(\ker(f) \) is also finitely generated. (Hint: Choose a basis \(\{e_1, \ldots, e_n\} \) for \(A^n \), and let \(m_i \in M \) with \(f(m_i) = e_i \). Show that \(M \) is isomorphic to the direct sum of \(\ker(f) \) and the submodule generated by \(m_1, \ldots, m_n \).)

Is it true that a submodule of a finitely generated module is finitely generated?

3.a) Find the splitting field \(K \) of the polynomial \(f(x) = x^3 - 2 \in \mathbb{Q}[x] \).

b) Determine the Galois group of the extension \(K/\mathbb{Q} \).

c) Show that \(\sqrt{2} \) cannot be written as a \(\mathbb{Q} \)-linear combination of \(n \)th roots of unity for any positive integer \(n \).

4.a) Let \(f(x) \in \mathbb{Q}[x] \) be an irreducible polynomial and let \(G = \text{Gal}(K : \mathbb{Q}) \) be the Galois group of its splitting field \(K \). Considering \(G \) as a subgroup of \(S_5 \), the symmetric group on five letters, show that \(G \) contains a five cycle.

b) Assume further that exactly three roots of \(f(x) \) are real. Show that the Galois group \(G \) contains a transposition.

c) Is the polynomial \(f(x) \) solvable by radicals? (Hint: It is a fact that any subgroup of \(S_5 \) that contains a 5-cycle and a transposition is equal to \(S_5 \)).