METU Mathematics Department Graduate Preliminary Examination Algebra II, February 2016

- 1. Let R be an integral domain.
 - (a) Show that free R-modules are torsion free.
 - (b) Exhibit an R-module which is finitely generated and torsion free but not free.
 - (c) Suppose that R is a principal ideal domain and let M be a finitely generated R-module. Show that M is torsion free if and only if M is free.
- 2. If $f:A\to A$ is an R-module homomorphism such that $f\circ f=f$, then show that

$$A = \mathrm{Ker}(f) \oplus \mathrm{Im}(f).$$

- 3. Let R be a commutative ring with identity. Let I and J be ideals of R. Prove that the R-module $(R/I) \otimes_R (R/J)$ is isomorphic to R/(I+J).
- 4. Let K be the splitting field of the polynomial $f(x) = x^6 + 3$ over \mathbb{Q} . Show that the Galois group of K over \mathbb{Q} is isomorphic to S_3 .
- 5. Let F be a field.
 - (a) Suppose that K is an algebraic extension of F and R is a ring such that $F \subseteq R \subseteq K$. Show that R is a field.
 - (b) Suppose that L = F(x), i.e. the field of rational functions over F. If $u \in L \setminus F$, then show that u is transcendental over F.