METU - Department of Mathematics
Graduate Preliminary Exam
Algebra - II
September 26, 2017

- Duration: 3 hours.
- Please write your solution for each question on a separate page.
- You can use any statement given below in the solution of any question even if you cannot prove that given statement.

Question 1.(3x12 pts.)

a) Show that every unitary left R-module A over a ring R with identity has a free-resolution, that is, show that there exists an infinite exact sequence

$$
\cdots \rightarrow F_n \rightarrow_{s_n} F_{n-1} \rightarrow_{s_{n-1}} \cdots \rightarrow F_1 \rightarrow_{s_1} A \rightarrow 0
$$

of left R-modules such that each F_i ($i \geq 1$) is a free R-module (Consider 0 as a free R-module with no generators).

b) For a right ideal I of a ring R with identity and a left R-module B show that there is a group isomorphism $(R/I) \otimes B \cong B/IP$ where IP is the subgroup of B generated by all elements of the form rb for $r \in I$ and $b \in B$.

c) Let R be a principal ideal domain and let $p, q, r \in R$ be three distinct primes. Assume that A is a unitary R-module generated by two elements as an R-module but $A \not\cong RA$ for any $a \in A$. If $\{r \in R | ra = 0 \text{ for all } a \in A\} = (p^a q^b r^c)$ as an ideal of R, then list all distinct R-modules A (satisfying these conditions) up to isomorphism.

Question 2.(3x7 pts.) Let F be the splitting field of $g(x) = x^4 - 2$ over \mathbb{Q}.

a) Determine F as a subfield of \mathbb{C}. What is $[F : \mathbb{Q}]$?

b) What is the order of the Galois group $\text{Aut}_\mathbb{Q}F$? To which familiar finite group is $\text{Aut}_\mathbb{Q}F$ isomorphic?

c) How many intermediate fields are there for the field extension F over \mathbb{Q}?

Question 3.(7 pts.) Show that if u is algebraic over a field K such that $[K(u) : K]$ is odd, then $K(u) = K(u^2)$.

Question 4.(2x9 pts.)

a) For any prime p show that the finite field F_{p^n} is a field extension of F_{p^n} if and only if $n|s$.

b) Show by using the field extensions mentioned in part (a) that $K = \bigcup_{n \geq 1} F_{p^n}$ is a field and K is the algebraic closure of $F_p = \mathbb{Z}_p$. (Note that in K we consider any F_{p^n} as a subfield of F_{p^n} whenever $n|s$).

Question 5.(2x9 pts.)

a) For field extensions $K \subset E \subset F$, if F is separable over K, show that F is separable over E.

b) For field extensions $K \subset E \subset F$, assume that E is a normal extension over K. Show that any $\tau \in \text{Aut}_K F$ restricts to a K-automorphism of E.