Problem 1. Let \(q \) be a prime power. Suppose \(f \) is an irreducible polynomial of degree \(m \) over \(\mathbb{F}_q \), and let \(\alpha \) be a root of \(f \).
(a) Prove that \(\alpha \in \mathbb{F}_{q^m} \).
(b) Prove that \(\alpha^n \) is a root of \(f \) in \(\mathbb{F}_{q^n} \) for all integers \(n \).
(c) Prove that \(\alpha, \alpha^n, \alpha^{2n}, \ldots, \alpha^{(m-1)n} \) are distinct roots of \(f \).

Problem 2. Suppose \(K \) is an algebraic extension of a field \(F \). Prove that the following are equivalent:

- \(K \) is algebraically closed.
- For every algebraic extension \(L \) of \(F \), there is an \(F \)-isomorphism from \(L \) to \(K \).

Problem 3. Let \(M \) be a module over a ring \(R \). An element \(x \) of \(M \) is called torsion if \(rx = 0 \) for some non-zero \(r \) in \(R \). Let \(T(M) \) be the set of torsion elements of \(M \).

(a) Prove that, if \(R \) is an integral domain, then \(T(M) \) is a submodule of \(M \), and \(M/T(M) \) has no torsion elements.
(b) Find an example where \(T(M) \) is not a submodule of \(M \).

Problem 4. Let \(R \) be a commutative ring with identity, and let \(M \) be a non-zero (unitary) \(R \)-module. If \(m \in M \), let
\[
\text{ord } m = \{ r \in R : rm = 0 \},
\]
and define
\[
\mathcal{F} = \{ \text{ord } m : m \in M \setminus \{0\} \}.
\]
Then \(\mathcal{F} \) is partially ordered by \(\subseteq \).

(a) Prove that \(\text{ord } m \) is an ideal of \(R \).
(b) Prove that every maximal element of \(\mathcal{F} \) is a prime ideal.