Graduate Preliminary Examination

Algebra II

18.2.2004: 3 hours

Problem 1. Let q be a prime power. Suppose f is an irreducible polynomial of degree m over \mathbb{F}_q , and let α be a root of f.

- (a) Prove that $\alpha \in \mathbb{F}_{q^m}$.
- (b) Prove that α^{q^n} is a root of f in F_{q^m} for all integers n.
- (c) Prove that α , α^q , α^{q^2} , ..., $\alpha^{q^{m-1}}$ are distinct roots of f.

Problem 2. Suppose K is an algebraic extension of a field F. Prove that the following are equivalent:

- ullet K is algebraically closed.
- \bullet For every algebraic extension L of F, there is an F-monomorphism from L to K.

Problem 3. Let M be a module over a ring R. An element x of M is called **torsion** if rx=0 for some non-zero r in R. Let T(M) be the set of torsion elements of M.

- (a) Prove that, if R is an integral domain, then T(M) is a submodule of M, and M/T(M) has no torsion elements.
- (b) Find an example where T(M) is not a submodule of M.

Problem 4. Let R be a commutative ring with identity, and let M be a non-zero (unitary) R-module. If $m \in M$, let

 $\operatorname{ord} m=\{r\in R: rm=0\},$

and define

 $\mathcal{F} = \{ \operatorname{ord} m : m \in M \setminus \{0\} \}.$

Then \mathcal{F} is partially ordered by \subseteq .

- (a) Prove that $\operatorname{ord} m$ is an ideal of R.
- (b) Prove that every maximal element of \mathcal{F} is a prime ideal.