Duration: 180 min.
1. Let \(\alpha \) be the real positive 16th root of 3 and consider the chain of intermediate fields
\[\mathbb{Q} \subseteq \mathbb{Q}(\alpha^8) \subseteq \mathbb{Q}(\alpha^4) \subseteq \mathbb{Q}(\alpha^2) \subseteq \mathbb{Q}(\alpha) = F. \]
 a) Compute the degrees of these five intermediate fields over \(\mathbb{Q} \) and conclude that these fields are all distinct.
 b) Show that every intermediate field between \(\mathbb{Q} \) and \(F \) is one of the above. (Hint: If \(\mathbb{Q} \subseteq K \subseteq F \), consider the constant term of the minimal polynomial of \(\alpha \) over \(K \)).

2. Let \(p \) be a prime number and let \(w_p = e^{2\pi i/p} \) be the \(p \)th root of 1 in \(\mathbb{C} \).
 a) Show that \(\text{Gal} (\mathbb{Q}(w_p)/\mathbb{Q}) \) is isomorphic to the multiplicative group \(\mathbb{Z}_p^* \).
 b) Let \(F \) be a field containing \(w_p \) and let \(a \) be an element of \(F \) which is not the \(p \)th power of any element of \(F \). Show that if \(E \) is the splitting field of the polynomial \(x^p - a \in F[x] \), then \(\text{Gal} (E/F) \) is isomorphic to the additive group \(\mathbb{Z}_p \).
 c) If \(K \) is the splitting field of \(x^p - 2 \in \mathbb{Q}[x] \), show that \(|K : \mathbb{Q}| = p(p - 1) \).

3. Let \(R \) be a ring. Recall that an \(R \)-module \(P \) is called projective if for every \(R \)-module epimorphism \(f : A \to B \) and every \(R \)-module homomorphism \(g : P \to B \), there exists an \(R \)-module homomorphism \(h : P \to A \) such that \(fh = g \).
 a) Let \(P \) be an \(R \)-module for a ring \(R \). Show that if there is a free \(R \)-module \(F \) and an \(R \)-module \(K \) such that \(F \cong K \otimes P \), then \(P \) is projective. (You may use the fact that every free module is projective).
 b) Let \(R \) be a commutative ring. Suppose that \(R \)-modules \(P \) and \(Q \) are projective. Show that \(P \otimes_R Q \) is projective.

4. Let \(R \) be a ring with unity and suppose that \(R \) can be written as the sum \(R = \sum_{i=1}^{m} I_i \), where \(I_i \) are finitely many (two-sided) ideals of \(R \) satisfying \(I_i \cap I_j = 0 \) whenever \(i \neq j \).
 a) Prove that, for every simple right \(R \)-module \(M \), there exists a unique subscript \(k \) such that \(M I_k \neq 0 \)
 b) Show that if \(i \neq j \), then every right \(R \)-module homomorphism \(\theta : I_i \to I_j \) is the zero map.