GRADUATE PRELIMINARY EXAMINATION ALGEBRA II, FEBRUARY 2013

FEBRUARY 14, 2013

- 1.a. Show that $f(x) = x^3 + x + 1 \in \mathbb{F}_2[x]$ is the unique irreducible polynomial of degree three so that sum of its roots in a splitting field is equal to zero, where \mathbb{F}_2 denotes the field of two elements.
- **1.b.** Show that $E = \mathbb{F}_2[x]/(f(x))$ is the splitting field of f(x), by finding all zeros of $f(x) = x^3 + x + 1$ in E.
- 1.c. Show that the extension $\mathbb{F}_2 \subseteq E$ is Galois, by determining its Galois group. Describe the action of the elements of the Galois group.
- **2.a.** Construct a Galois field extension K of the field of rational numbers, so that $\mathbb{Q} \subseteq K \subseteq \mathbb{R}$ and the Galois group is isomorphic to the Klein four group $\mathbb{Z}_2 \times \mathbb{Z}_2$.
 - 2.b. Determine the intermediate fields of this extension.
- **2.c.** Show that $\mathbb{Q}(\sqrt[4]{2})$ is a degree four extension of \mathbb{Q} , which is not Galois.
- **3.a.** Let M denote the free \mathbb{Z} -module $\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$. Determine the quotient module M/N, where N is generated by the vectors (1,2,3), (0,-2,5), (2,0,8) and (0,1,2). (Use Smith Normal From.) Calculate the number elements of the quotient module if it is finite.
- **3.b.** Let \mathbb{F} be a field, $R = \mathbb{F}[x]$ the polynomial ring over \mathbb{F} , and $M = R \oplus \cdots \oplus R$ the free R-module of rank n, for some positive fixed integer n. For any $n \times n$ -matrix A with entries in the field \mathbb{F} , consider the associated matrix $A xI_{n \times n}$, with entries in the ring R, where $I_{n \times n}$ is the $n \times n$ -identity matrix. Let N_A be the submodule of M generated by the rows of $A xI_{n \times n}$. Calculate the quotient modules, M/N_{A_i} , using Smith Normal Form again, for the matrices

$$A_1 = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$
 and $A_2 = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 2 \end{pmatrix}$,

with entries in the field of rational numbers (i.e., we take $\mathbb{F} = \mathbb{Q}$ and n = 3). Are the quotient modules isomorphic? Relate the quotient modules to the characteristic and the minimal polynomial of the matrices.

- **4.** Let R be an integral domain and M an R-module so that for any $r \neq 0 \in R$ and $m \neq 0 \in M$, we have $rm \neq 0$. The R-module M is called divisible if for each $m \in M$ and nonzero element $r \in R$ there exists an element $m' \in M$ such that m = rm'.
- **4.a.** Prove that the direct sum of two divisible *R*-modules is also divisible.
- **4.b.** An R-module M is called injective, if whenever $i: M \to N$ is an embedding of R-modules and $\phi: M \to L$ is an R-module homomorphism then there is an R-module homomorphism $\Phi: N \to L$ so that $\phi(m) = (\Phi \circ i)(m)$, for all $m \in M$. Prove that an injective R-module is divisible.