METU Mathematics Department Graduate Preliminary Examination Algebra II, January 2014

- 1. Let I = (2, x) be the ideal generated by 2 and x in the ring $R = \mathbb{Z}[x]$. Note that the ring $\mathbb{Z}/2\mathbb{Z} \cong R/I$ is naturally an *R*-module.
 - Show that the map $\phi: I \times I \to \mathbb{Z}/2\mathbb{Z}$ defined by

$$\phi(a_0 + a_1x + \ldots + a_nx^n, b_0 + b_1x + \ldots + b_mx^m) = \frac{a_0}{2}b_1 \pmod{2}$$

is R-bilinear.

- Show that $2 \otimes x x \otimes 2$ is nonzero in $I \otimes_R I$.
- 2. Let I_n be the identity matrix of dimension n.
 - Prove that there is no 3×3 matrix A over \mathbb{Q} such that $A^8 = I_3$ but $A^4 \neq I_3$.
 - Write down a 4×4 matrix B over \mathbb{Q} such that $B^8 = I_4$ and $B^4 \neq I_4$.
- 3. Let \mathbb{F}_q be a finite field with q elements and let K/\mathbb{F}_q be a quadratic extension.
 - For any $\alpha \in K$, show that $\alpha^{q+1} \in \mathbb{F}_q$.
 - Show that every element of \mathbb{F}_q is of the form β^{q+1} for some $\beta \in K$.
- 4. Let p be an odd prime and let $L = \mathbb{Q}(\zeta_p)$ be the p-th cyclotomic field.
 - Show that L has a unique subfield K such that $[K : \mathbb{Q}] = 2$.
 - If p = 5, then find an element $\alpha \in L$ such that $L = K(\alpha)$ and $\alpha^2 \in K$.
 - If $p \ge 7$, then show that there is no $\alpha \in L$ such that $L = K(\alpha)$ and $\alpha^{(p-1)/2} \in K$.