METU Mathematics Department
 Graduate Preliminary Examination
 Algebra II, January 2014

1. Let $I=(2, x)$ be the ideal generated by 2 and x in the ring $R=\mathbb{Z}[x]$. Note that the ring $\mathbb{Z} / 2 \mathbb{Z} \cong R / I$ is naturally an R-module.

- Show that the map $\phi: I \times I \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ defined by

$$
\phi\left(a_{0}+a_{1} x+\ldots+a_{n} x^{n}, b_{0}+b_{1} x+\ldots+b_{m} x^{m}\right)=\frac{a_{0}}{2} b_{1} \quad(\bmod 2)
$$

is R-bilinear.

- Show that $2 \otimes x-x \otimes 2$ is nonzero in $I \otimes_{R} I$.

2. Let I_{n} be the identity matrix of dimension n.

- Prove that there is no 3×3 matrix A over \mathbb{Q} such that $A^{8}=I_{3}$ but $A^{4} \neq I_{3}$.
- Write down a 4×4 matrix B over \mathbb{Q} such that $B^{8}=I_{4}$ and $B^{4} \neq I_{4}$.

3. Let \mathbb{F}_{q} be a finite field with q elements and let K / \mathbb{F}_{q} be a quadratic extension.

- For any $\alpha \in K$, show that $\alpha^{q+1} \in \mathbb{F}_{q}$.
- Show that every element of \mathbb{F}_{q} is of the form β^{q+1} for some $\beta \in K$.

4. Let p be an odd prime and let $L=\mathbb{Q}\left(\zeta_{p}\right)$ be the p-th cyclotomic field.

- Show that L has a unique subfield K such that $[K: \mathbb{Q}]=2$.
- If $p=5$, then find an element $\alpha \in L$ such that $L=K(\alpha)$ and $\alpha^{2} \in K$.
- If $p \geq 7$, then show that there is no $\alpha \in L$ such that $L=K(\alpha)$ and $\alpha^{(p-1) / 2} \in K$.

