Graduate Preliminary Exar	n, Algebra II Spring 2022	March 4, 2022
Last Name :	Signature :	
Name :		
Student No :		
4 QUESTIONS		TOTAL 100 POINTS
1 2 3 4	Duration 3 hours	

METU Department of Mathematics

- (1) (25 Points) If $T: V \to V$ is a linear transformation on a vector space V over a field **F**, then V can be made into an $\mathbf{F}[t]$ -module by setting $t \cdot v = T(v)$ for any $v \in V$. For each of the following transformations T, classify all $\mathbf{F}[t]$ -submodules of V.
 - (a) $V = \mathbf{R}^2$ and T(x, y) = (-y, x).
 - (b) $V = \mathbf{R}^3$ and T(x, y, z) = (z, x, y).
 - (c) $V = \mathbf{R}^3$ and T(x, y, z) = (y, x, 0).
- (2) (25 Points) State the definitions of projective and injective modules. Using the definition, show that a nonzero finite abelian group is neither a projective nor an injective **Z**-module.
- (3) (25 Points) Let R be an integral domain. An element m of an R-module M is called a torsion element if there exists a nonzero element $r \in R$ such that rm = 0.
 - (a) If $I \subseteq R$ is a principal ideal, then prove that the *R*-module $I \otimes_R I$ has no torsion element other than zero.
 - (b) In particular, consider $R = \mathbf{Z}[x, y]$ and I = (x, y). Show that the *R*-module $I \otimes_R I$ has a nonzero torsion element.
- (4) (25 Points) Let L be the splitting field of $f(x) = x^6 + 3$ over \mathbf{Q} . Show that the Galois group $G = \operatorname{Gal}(L/\mathbf{Q})$ is isomorphic to S_3 . Determine all proper subfields $\mathbf{Q} \subsetneq K \subsetneq L$ by using the fundamental theorem of Galois theory. For each K, find an explicit element $\alpha \in L$ so that $K = \mathbf{Q}(\alpha)$.