Complex Analysis

1. Evaluate \(\int_0^\infty e^{-x^2} \cos(x^2) \, dx \) using complex integration along the given contour.
 (Hint: \(\int_0^\infty e^{-u^2} \, du = \frac{\sqrt{\pi}}{2} \)).

2. Let \(f : \mathbb{C}^* \to \mathbb{C} \) be an analytic map such that for all \(z \in \mathbb{C} \) the set \(f^{-1}(z) \) is finite (if not empty). Show that
 (i) \(z = 0 \) is not an essential singularity of \(f \).
 (ii) If \(f \) is bounded in some deleted neighborhood of 0, then \(f \) is a polynomial.

3. Recall that the analytic automorphisms of the unit disk \(D \) are given by linear fractional transformations of the form \(z \mapsto e^{i\theta} \frac{z - \alpha}{1 - \overline{\alpha} z} \) for some \(\theta \in [0, 2\pi) \) and \(\alpha \in D \).
 a) Using this fact prove that the analytic automorphisms of the upper half-plane \(\mathcal{H} \) are given by (special) linear fractional transformations.
 b) Show that the map \(\Omega = \{ z : 0 < \arg(z) < \frac{\pi}{2} \} \to \mathcal{H} \), \(z \mapsto z^2 \) is an analytic isomorphism.
 Deduce that if \(g \in Aut(\Omega) \), then there exists a linear fractional transformation \(T \) such that \(g(z) = \sqrt{T(z^2)} \) for a suitable branch of the square root function (which branch?).
 c) Show that there exists no linear fractional transformation which maps \(\Omega \) isomorphically onto \(D \).

4. Let \(f : \mathbb{C} \to \mathbb{C} \) be a rational function such that \(|f(z)| = 1 \) if \(|z| = 1 \). Prove that there exist \(c \in \mathbb{C} \), \(c \neq 0 \) and \(\alpha_1, \ldots, \alpha_n \in \mathbb{C} \), \(|\alpha_i| \neq 0,1 \) and \(m \in \mathbb{Z} \) such that
 \[
 f(z) = cz^m \prod_{i=1}^{n} \frac{z - \alpha_i}{1 - \overline{\alpha_i} z} .
 \]