METU - Department of Mathematics

 Graduate Preliminary Exam

 Graduate Preliminary Exam}

Complex Analysis

Duration : 180 min.
Fall 2008
Notation : $D=\{z:|z|<1\}, D^{*}(0 ; r)=\{z:|z|<r, z \neq 0\}, \mathbb{C}^{*}=\mathbb{C}-\{0\}$.

1. Let $\Omega \subset \mathbb{C}$ be an open connected region and $f: \Omega \rightarrow \mathbb{C}$ be a non-constant analytic function.
a) Show that $\operatorname{det}(d f(z))>0$ for all $z \in \Omega$, except possibly for z in a discrete set $S \subset \Omega$.

Here $d f$ is the usual differential of $f(z)=u(x, y)+i v(x, y)$ considered as a function of two variables.
b) Show that if $z \in \Omega-S$, then there exists a neighborhood U of z in Ω such that $\left.f\right|_{U}$ has an analytic inverse.
b) Can you find a bounded region Ω and $f(z)$ analytic in Ω for which the set S is infinite?

Give an example, or prove that there exists no such pair (Ω, f).
2. Let $f: D^{*}(0 ; R) \rightarrow \mathbb{C}$ be a non-constant analytic function and for $a \in \mathbb{C}$ let $S_{a}=f^{-1}(a) \cap D^{*}(0 ; \mathbf{R} / \mathbf{2})$.
a) Show that there exists no such f for which the set S_{a} is infinite for exactly one value of a and is finite or empty for all other $a \in \mathbb{C}$.
b) Give an example of $f: D^{*}(0 ; R) \rightarrow \mathbb{C}$ for which the set S_{a} is infinite for all $a \in \mathbb{C}$, except precisely for one value of a.
3. Consider the mapping $w: \mathbb{C}^{*} \rightarrow \mathbb{C}, w(z)=z+1 / z$.
a) Show that
(i) $w(z)$ is conformal in \mathbb{C}^{*} except at $z= \pm 1$.
(ii) w maps the boundary of the semi-disk $U=\{z:|z|<1, \operatorname{Im}(z)>0\}$ onto the real axis.
(iii) $\left.w\right|_{U}: U \rightarrow \mathbb{C}$ is an analytic isomorphism onto $\mathcal{H}_{-}=\{w: \operatorname{Im}(w)<0\}$.
b) Write the linear fractional transformation $T: \mathcal{H}_{-} \rightarrow D$ which satisfies the conditions $T(-3 i / 2)=0, T(0)=i$.
(Hint: Can you determine $T^{-1}(\infty)$?).
c) Show that we obtain an analytic isomorphism $\Phi=T \circ w: U \rightarrow D$ such that $\Phi(i / 2)=0, \Phi^{\prime}(i / 2)>0$ and that Φ is the unique isomorphism satisfying these conditions.
4. Using complex integration on the given contour Γ compute

$$
\int_{0}^{\infty} \frac{d x}{x^{a}(1+x)}, \quad 0<a<1
$$

NOTE : You must specify the complex function you are integrating and justify the details of the computation.

