TMS

Fall 2009

Complex Analysis

I. a) Find the conformal map

$$T: \mathcal{H} = \{z: Imz > 0\} \rightarrow D = \{z: |z| < 1\}$$

which satisfies

$$T(i) = 0$$

$$T(1) = 1$$

(Hint: Consider symmetry).

b) Map the region

$$\Omega = \{z : 0 < Re(z) < 2\}$$

conformally onto D.

(Hint: First map Ω into \mathcal{H}).

- a) Formulate precisely, the Cauchy theorem for complex integration and its partial converse (the Morera's Theorem)
- b) Using Morera's Theorem, prove that every function f which is continuous in the open disk D and analytic on $D-\{1/2\}$ is analytic on D.

- 3. Let f be a meromorphic function in \mathbb{C} whose poles all lie on the line y=x (for example $f(x)=\tan(\frac{z}{1+i})$) and for $r\in\mathbb{R}_+$, let C(r) be the circle |z|=r.
 - a) For which circles C(r), is $\int_{C(r)} f(z)dz$ defined?
 - b) Show that the formula

$$F(r) = \int_{C(r)} f(z)dz$$

defines a function $(0,\infty)-D\to\mathbb{C}$ where D is a discrete subset of $(0,\infty)$.

- c) Show that if f(z) has only finitely many poles in \mathbb{C} , then there exists some R > 0 such that F defines a constant function on (R, ∞) .
 - **4.** Consider the open disc D(0,1). Let $a,b \in D(0,1)$ be two distinct points.
 - a) Write the most general analytic automorphism

$$\sigma:D(0,1)\to D(0,1)$$

such that $\sigma(a) = 0$.

b) Show that Aut(D(0,1)) acts transitively on D(0,1), by writing down

$$\tau \in AutD((0,1))$$

such that $\tau(a) = b$.

c) True or false? why?

If $\Omega \subset \mathbb{C}$ is any simply connected region, and if $a, b \in \Omega$, then there exists an analytic automorphism $\psi : \Omega \to \Omega$ such that $\psi(a) = b$.