M.E.T.U
 Department of Mathematics
 Preliminary Exam - Sep. 2011
 COMPLEX ANALYSIS

Duration : 180 min.

Each question is 25 pt.

1. For $R>0$, let Γ_{R} be the counterclockwise oriented closed curve obtained by joining the following paths, in the given order :
$\Gamma_{1, R}:[0, R] \rightarrow \mathbb{C}$ defined by $\Gamma_{1, R}(t)=t$
$\Gamma_{2, R}:[0, \pi / 2] \rightarrow \mathbb{C}$ defined by $\Gamma_{2, R}(t)=R e^{t i}$
$\Gamma_{3, R}:[0, R] \rightarrow \mathbb{C}$ defined by $\Gamma_{3, R}(t)=(R-t) i$.
Consider the analytic function $f: \mathbb{C}-\{0\} \rightarrow \mathbb{C}$ defined by

$$
f(z)=\frac{e^{-z}-e^{i z}}{z}
$$

for each $z \neq 0$.
(A) Show that $z=0$ is a removable singularity of $f(z)$.
(B) Prove that

$$
\int_{\Gamma_{R}} f(z) d z=0 .
$$

(C) Prove that

$$
\lim _{R \rightarrow \infty} \int_{\Gamma_{2, R}} f(z) d z=0 .
$$

(D) Prove that

$$
\int_{0}^{\infty} \frac{e^{-x}-\cos x}{x} d x=0
$$

2. Consider

$$
\Omega=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}
$$

and

$$
\Delta=\{z \in \mathbb{C}| | z \mid<1\}
$$

(A) Given any $b \in \Omega$ prove that the map $\Psi=\Psi_{b}: \mathbb{C}-\{\bar{b}\} \rightarrow \mathbb{C}$ defined for each $z \neq \bar{b}$ by

$$
\Psi(z)=\frac{z-b}{z-\bar{b}}
$$

maps Ω onto Δ bijectively.
(B) If $f: \Omega \rightarrow \mathbb{C}$ is analytic and satisfies $f(\Omega) \subseteq \Omega$, prove that

$$
\frac{|f(z)-f(a)|}{|f(z)-\overline{f(a)}|} \leq \frac{|z-a|}{|z-\bar{a}|}
$$

for any $z, a \in \Omega, z \neq a .{ }^{1}$
(C) Deduce that

$$
\left|f^{\prime}(z)\right| \leq\left|\frac{\operatorname{Im}(f(z))}{\operatorname{Im}(z)}\right|
$$

for any $z \in \Omega$.

[^0]3. Let $\Omega \subset \mathbb{R}^{2} \cong \mathbb{C}$ be an open connected region and let
$$
f=(u, v): \Omega \rightarrow \mathbb{C}
$$
be a non-constant differentiable function. Consider the set
$$
Z_{d f}=\{z=(x, y) \in \Omega: \operatorname{det}(d f(x, y))=0\} .
$$
a) Give an example $f(x, y)$ for which $Z_{d f}$ is not a discrete subset of Ω.
b) Suppose that $f(z)$ is an analytic function.

- Show that $Z_{d f}$ is discrete.
- Suppose that $z_{0} \in Z_{d f}$ and that $f\left(z_{0}\right)=0$. Show that there exists an integer $n>1$ such that the function $g(z)=1 / f(z)$ maps a neighborhood of z_{0} analytically onto a neighborhood of ∞ in an n-to-one manner.
- Show that if $\operatorname{Res}\left(g ; z_{0}\right)=0$ then $g(z)$ is the derivative of a function meromorphic around z_{0}.

4. a) Show that if $f(z)$ is a non-constant entire periodic function, then $f(z)$ has an essential singularity at ∞.
b) Does there exist a non-constant entire doubly periodic function? Explain.
(Recall that a meromorphic function $f(z)$ is said to be doubly periodic with periods w_{1}, w_{2} if $w_{1} / w_{2} \notin \mathbb{R}$ and $f\left(z+w_{1}\right)=f(z)=f\left(z+w_{2}\right)$ for all $z \in \mathbb{C}$).
c) Let $f(z)$ be a doubly periodic function with periods w_{1}, w_{2}. Let $a \in \mathbb{C}$ be such that $f(z)$ has no poles on the boundary of the parellogram
Γ whose vertices are at $a, a+w_{1}, a+w_{2}, a+w_{1}+w_{2}$.
Show that $f(z)$ has finitely many poles $\left\{z_{1}, \ldots, z_{N}\right\}$ in the interor of Γ and that

$$
\sum_{1}^{N} \operatorname{Res}\left(f ; z_{i}\right)=0 .
$$

[^0]: ${ }^{1}$ Consider $g=\Psi_{f(a)} \circ f \circ \Psi_{a}^{-1}$.

