M.E.T.U

Department of Mathematics Preliminary Exam - Sep. 2011 COMPLEX ANALYSIS

Duration : 180 min.

Each question is 25 pt.

1. For R > 0, let Γ_R be the counterclockwise oriented closed curve obtained by joining the following paths, in the given order :

$$\begin{split} \Gamma_{1,R} &: [0,R] \to \mathbb{C} \text{ defined by } \Gamma_{1,R}(t) = t \\ \Gamma_{2,R} &: [0,\pi/2] \to \mathbb{C} \text{ defined by } \Gamma_{2,R}(t) = Re^{ti} \\ \Gamma_{3,R} &: [0,R] \to \mathbb{C} \text{ defined by } \Gamma_{3,R}(t) = (R-t)i. \end{split}$$

Consider the analytic function $f: \mathbb{C} - \{0\} \to \mathbb{C}$ defined by

$$f(z) = \frac{e^{-z} - e^{iz}}{z}$$

for each $z \neq 0$.

(A) Show that z = 0 is a removable singularity of f(z).

(B) Prove that

$$\int_{\Gamma_R} f(z) dz = 0 \; .$$

(C) Prove that

$$\lim_{R \to \infty} \int_{\Gamma_{2,R}} f(z) dz = 0 \; .$$

(D) Prove that

$$\int_0^\infty \frac{e^{-x} - \cos x}{x} \, dx = 0 \; .$$

2. Consider

$$\Omega = \{ z \in \mathbb{C} \mid \operatorname{Im}(z) > 0 \}$$

and

$$\Delta = \{ z \in \mathbb{C} \mid |z| < 1 \} .$$

(A) Given any $b \in \Omega$ prove that the map $\Psi = \Psi_b : \mathbb{C} - \{\bar{b}\} \to \mathbb{C}$ defined for each $z \neq \bar{b}$ by

$$\Psi(z) = \frac{z-b}{z-\bar{b}}$$

maps Ω onto Δ bijectively.

(B) If $f: \Omega \to \mathbb{C}$ is analytic and satisfies $f(\Omega) \subseteq \Omega$, prove that

$$\frac{|f(z) - f(a)|}{|f(z) - \overline{f(a)}|} \le \frac{|z - a|}{|z - \overline{a}|}$$

for any $z,a\in\Omega, z\neq a$. ^

(C) Deduce that

$$|f'(z)| \le |\frac{\operatorname{Im}(f(z))}{\operatorname{Im}(z)}|$$

for any $z \in \Omega$.

¹Consider $g = \Psi_{f(a)} \circ f \circ \Psi_a^{-1}$.

3. Let $\Omega \subset \mathbb{R}^2 \cong \mathbb{C}$ be an open connected region and let

$$f = (u, v) : \Omega \to \mathbb{C}$$

be a non-constant differentiable function. Consider the set

$$Z_{df} = \{ z = (x, y) \in \Omega : det(df(x, y)) = 0 \}.$$

- a) Give an example f(x, y) for which Z_{df} is not a discrete subset of Ω .
- b) Suppose that f(z) is an analytic function.
 - Show that Z_{df} is discrete.
 - Suppose that $z_0 \in Z_{df}$ and that $f(z_0) = 0$. Show that there exists an integer n > 1 such that the function g(z) = 1/f(z) maps a neighborhood of z_0 analytically onto a neighborhood of ∞ in an *n*-to-one manner.
 - Show that if $\operatorname{Res}(g; z_0) = 0$ then g(z) is the derivative of a function meromorphic around z_0 .
- 4. a) Show that if f(z) is a non-constant entire periodic function, then f(z) has an essential singularity at ∞ .

b) Does there exist a non-constant entire doubly periodic function ? Explain.

(Recall that a meromorphic function f(z) is said to be doubly periodic with periods w_1, w_2 if $w_1/w_2 \notin \mathbb{R}$ and $f(z+w_1) = f(z) = f(z+w_2)$ for all $z \in \mathbb{C}$).

c) Let f(z) be a doubly periodic function with periods w_1, w_2 . Let $a \in \mathbb{C}$ be such that f(z) has no poles on the boundary of the parellogram

 Γ whose vertices are at $a, a + w_1, a + w_2, a + w_1 + w_2$.

Show that f(z) has finitely many poles $\{z_1, ..., z_N\}$ in the interor of Γ and that

$$\sum_{1}^{N} \operatorname{Res}(f; z_i) = 0.$$