PRELIMINARY EXAM - Sep.2012 Complex Analysis

Duration: 3 hr.

Q.1	Q.2	Q.3	Q.4	Total
				٠.

- 1. (25 = 20 + 5 pt.)
 - a) Let

$$f:\overline{D}(0;1) \to \mathbb{C} \ \ ext{and} \ \ g:\overline{D}(0;1) \to \mathbb{C}$$

be two continuous functions which are analytic on D(0;1). Show that if f=g on the unit circle |z|=1, then f=g.

- b) Give an example of a pair of smooth functions f, g on $\overline{D}(0; 1)$ such that $f \neq g$ on D(0; 1) but f(x, y) = g(x, y) on the circle $x^2 + y^2 = 1$.
- 2. (25 = 7+10+8 pt.)

Let $\Omega \subset \mathbb{C}$ be an open region and let f(z) be a function which is analytic on Ω except for a set of isolated singularities.

- a) Show that Residue $(f'(z); z_0) = 0$ for all $z_0 \in \Omega$.
- b) Show that if f(z) is meromorphic on Ω , then the function

$$g(z) = e^{f(z)}$$

has no poles in Ω .

(Hint: For $z_0 \in \Omega$, apply the principle of argument to g(z) in a suitable neighbourhood of z_0).

c) Construct an analytic function $h: \mathbb{C} - \{n\pi: n \in \mathbb{Z}\} \to \mathbb{C}$ which has an essential singularity at each point $z_n = n\pi, n \in \mathbb{Z}$.

3. (25 = (7 + 3) + 7 + 8 pt.)

 $n(\gamma, a)$ denotes the index at $a \in \mathbb{C}$ of the closed curve $\gamma : [0, 2\pi] \to \mathbb{C} - \{a\}$.

(A) If $b \neq 0$, prove that

$$\mathsf{n}(\gamma^n,b^n)=\mathsf{n}(\gamma,b).$$

Prove also that

$$\mathsf{n}(\gamma^n,0) = n\,\mathsf{n}(\gamma,0)$$

for $n \in \mathbb{Z}$ with $n \ge 1$.

(B) If $a \in \mathbb{C} - \{0\}$ is an isolated singularity of analytic f(z), prove that any b with $a = b^n$ is an isolated singularity of $g(z) = f(z^n)$.

(C) Show that $\frac{\operatorname{Res}_{z=a}(f(z))}{a} = n \frac{\operatorname{Res}_{z=b}(g(z))}{b}$

4. (25 = 5 + 8 + 7 + 5 pt.)

Consider an open $\Omega \subseteq \mathbb{C}$ and $a \in \Omega$. Let $\Delta = \{z \in \mathbb{C} \mid |z| < 1\}$.

(A) If $h: \Omega \to \mathbb{C}$ is a continuous function which is analytic on $\Omega - \{a\}$, prove that h is analytic on Ω .

(B) Let $f: \mathbb{C} - \Delta \to \Delta$ be an analytic function with $\lim_{z \to \infty} f(z) = 0$.

Prove that

$$|f(z)| \leq \frac{1}{|z|}$$

for all $z \in \mathbb{C} - \Delta$.

(C) Prove that $\lim_{z\to\infty} \Bigl(zf(z)\Bigr)$ exists and $\Bigl|\lim_{z\to\infty} \Bigl(zf(z)\Bigr)\Bigr| \le 1.$

(D) Prove that in order for any one of the inequalities in (B) and (C) to become an equality, it is necessary and sufficient that f is a constant.