Complex Analysis

PRELIMINARY EXAMINATION

Monday, 23rd September 2013 Four questions, three hours

(A) Let f be an entire function. If Re(f) is bounded, prove that f is a constant. (Consider e^f !)

(B) Let g be an entire function. If $a \operatorname{Re}(g) - b \operatorname{Im}(g)$ is bounded, where $(a, b) \neq (0, 0)$,

prove that g is a constant.

(C) Show that for a not identically vanishing entire function h, the quantity $x \operatorname{Re}(h(z)) - y \operatorname{Im}(h(z))$ is unbounded, where z = x + iy.

(D) Does there exist an entire function w with w'(0) = 1 such that

$$x\operatorname{Re}(w(z)) + y\operatorname{Im}(w(z)) \le x^2 + y^2$$

for all $z = x + iy \in \mathbb{C}$.

$$[12 + 13]$$

(A) Show that

$$\exp\left(\frac{z-z^{-1}}{2}\right) = \sum_{n=-\infty}^{\infty} A_n z^n$$

for every $z \in \mathbb{C} - \{0\}$ where,

$$A_n = \frac{1}{2\pi} \int_0^{2\pi} \cos\left(n\theta - \sin\theta\right) .$$

(B) Show - by employing the Taylor expansion of e^w about w=0 or otherwise - that

34

$$\int_{0}^{2\pi} \cos\left(\theta + \sin\theta\right) = \pi \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{4^{k} k! (k+1)!}$$

$$[5+7+(4+9)]$$

- (A) Let $f: \Omega \subseteq_{op} \mathbb{C} \longrightarrow \mathbb{C}$ be an analytic function. If $a \in \Omega$ is a zero of f with multiplicity $\mu \geq 2$, prove that f'(a) = 0.
- (B) Let $g: \Omega \subseteq_{op} \mathbb{C} \longrightarrow \mathbb{C}$ be another analytic function, $a_1, a_2, a_3, \dots, a_N \in \Omega$ be the zeros of f with respective multiplicities $\mu_1, \mu_2, \mu_3, \dots, \mu_N$ enclosed by the simple closed positively oriented curve Γ . Prove that

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{g(z) f'(z)}{f(z)} dz = \sum_{n=1}^{N} g(a_n) \mu_n$$

(C) Prove that the polynomial

$$e(z) = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots + \frac{z^n}{n!}$$

has exactly n distinct rooots $b_1, b_2, b_3, \dots, b_n \in \mathbb{C}$ and

$$\sum_{r=1}^{n} b_r^{-t} = 0$$

for every $t \in \mathbb{N}$ with $2 \le t \le n$.

$$[7+9+9]$$

(A) Let

$$\Omega = \left\{ z \in \mathbb{C} \mid |z| > 4 \right\}.$$

Show that there exists an analytic function $f:\Omega\longrightarrow\mathbb{C}$ with

$$f'(z) = \frac{z}{(z-1)(z-2)(z-3)}$$

(B) Show that there exists $\underline{\text{no}}$ analytic function $g:\Omega\longrightarrow\mathbb{C}$ with

$$g'(z) = \frac{z^2}{(z-1)(z-2)(z-3)}$$

(C) Let

$$\Xi = \left\{ z \in \mathbb{C} \mid |z| > 9/4, |z - 3| > 1/8 \right\}.$$

Does that there exists an analytic function $h:\Xi\longrightarrow\mathbb{C}$ with

$$h'(z) = \frac{z}{(z-1)(z-2)(z-3)}$$
?