1. Consider the entire function \(f(z) = z^2 + Bz \).

 a) Determine \(B \) if \(|f(B)| = |B| \) and at \(z = 0 \) the given map defines a rotation through \(\theta = \pi/4 \).

 b) Determine the zeros, poles and all multiple points of the holomorphic map
 \[f : \mathbb{C} \to \mathbb{C}. \]

 c) Let \(g(z) = f(z)^{-n}, \ n \geq 1 \). Determine
 \[\int_{|z|=R} \frac{g'(z)}{g(z)} \, dz \]
 for all permissible values of \(R \).

2. Consider the function \(f(z) = e^{1/(z-1)} \).

 a) Show that \(f \) is holomorphic in \(\mathbb{C} - \{0, 1\} \) with essential singularities at \(z = 0 \) and \(z = 1 \).

 b) Compute
 \[\int_{z=R} f(z) \, dz \]
 for
 (i) \(0 < R < 1 \), (ii) \(R > 1 \).

 c) True or false? Why?
 For any pair of positive real numbers \(\{r, r'\}, \ f(D^*(0; r)) \cap f(D^*(1; r')) \neq \emptyset. \)
3. Let \(\sum_{n=0}^{\infty} a_n z^n \) be a power series which converges in \(\mathbb{C} \) to a nowhere vanishing function \(f(z) \).

a) Show that for any given \(R > 0 \), there exists a positive integer \(N \) such that for all \(m \geq N \), the polynomial \(f_m(z) = \sum_{n=0}^{m} a_n z^n \) has no zeros in \(D(0; R) \).

b) True or false? Explain.
 (i) \(\log(f(z)) \) can be defined as an entire function.
 (ii) \(f \) extends to a meromorphic function on the extended complex plane if and only if it is constant.

4. a) Show that if \(f : \overline{D}(0; R) \to \mathbb{C} \) is holomorphic and \(|f(z)| < R \) on \(|z| = R \), then there exists a unique point \(a \in D(0; R) \) such that \(f(a) = a \).

b) Show that for \(a, b \in \Omega \) (\(\Omega \) a simply connected region), there exists a holomorphic automorphism
 \[\Phi : \Omega \to \Omega \]
 such that \(\Phi(a) = b \). Is \(\Phi \) unique?