Preliminary Exam - September 2015 COMPLEX ANALYSIS

Each question is 25 pt.

1. Consider the entire function $f(z)=z^{2}+B z$.
a) Determine B if $|f(B)|=|B|$ and at $z=0$ the given map defines a rotation through $\theta=\pi / 4$.
b) Determine the zeros, poles and all multiple points of the holomorphic map

$$
f: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}
$$

c) Let $g(z)=f(z)^{-n}, n \geq 1$. Determine

$$
\int_{|z|=R} \frac{g^{\prime}(z)}{g(z)} d z
$$

for all permissible values of R.
2. Consider the function $f(z)=e^{1 / z(z-1)}$.
a) Show that f is holomorphic in $\mathbb{C}-\{0,1\}$ with essential singularities at $z=0$ and $z=1$.
b) Compute

$$
\int_{z=R} f(z) d z
$$

for
(i) $0<R<1$, (ii) $R>1$.
c) True or false ? Why ?

For any pair of positive real numbers $\left\{r, r^{\prime}\right\}, f\left(D^{*}(0 ; r)\right) \cap f\left(D^{*}\left(1 ; r^{\prime}\right)\right) \neq \emptyset$.
3. Let $\sum_{0}^{\infty} a_{n} z^{n}$ be a power series which converges in \mathbb{C} to a nowhere vanishing function $f(z)$.
a) Show that for any given $R>0$, there exists a positive integer N such that for all $m \geq N$, the polynomial $f_{m}(z)=\sum_{0}^{m} a_{n} z^{n}$ has no zeros in $D(0 ; R)$.
b) True or false ? Explain.
(i) $\log (f(z))$ can be defined as an entire function.
(ii) f extends to a meromorphic function on the extended complex plane if and only if it is constant.
4. a) Show that if $f: \bar{D}(0 ; R) \rightarrow \mathbb{C}$ is holomorphic and $|f(z)|<R$ on $|z|=R$, then there exists a unique point $a \in D(0 ; R)$ such that $f(a)=a$.
b) Show that for $a, b \in \Omega$ (Ω a simply connected region), there exists a holomorphic automorphism

$$
\Phi: \Omega \rightarrow \Omega
$$

such that $\Phi(a)=b$. Is Φ unique ?

