TMS - Complex Analysis Sep. 2017

Each question is 25 pts.

Notation:

$$D = \{z : |z| < 1\}, \ D^* = \{z : 0 < |z| < 1\}, \ \mathbb{C}^* = \mathbb{C} - \{0\}, \ \mathbb{P}^1 = \mathbb{C} \cup \{\infty\}.$$

- 1. a) Describe all holomorphic functions $f: \Omega \to \mathbb{C}^*$ where
 - i) $\Omega = \mathbb{P}^1$, ii) $\Omega = \mathbb{C}$.
 - b) Construct a surjective holomorphic map $g: D^* \to \mathbb{C}^*$.
- 2. Let f be a non-constant entire function.
 - a) Show that if there exists $w \in \mathbb{C}$ such that $f(z_n) = w$ for an infinite sequence $\{z_n\}$, then this sequence is unbounded.
 - b) Show that if f extends to a meromorphic function on \mathbb{P}^1 , then there exists an integer $N \geq 1$ such that for any $w \in \mathbb{P}^1$ the set $f^{-1}(w)$ has precisely N elements (counted with multiplicity).
 - c) In (b), determine all f such that f' is nowhere 0 in \mathbb{P}^1 .
- 3. a) Determine the zeros and the order of zeros of the function $f(z) = e^{z^2} 1$ in the upper half-plane.
 - b) Using part (a), verify that for any z_0 on the unit circle |z|=1 there exists an analytic function $g:D\to\mathbb{C}$ and a sequence $\{z_n\}\subset D$ such that
 - $\lim_{n\to\infty} z_n = z_0$
 - g(z) has a simple zero at each z_n
 - q(z) does not vanish at any other point.
- 4. Let f(z) be analytic in the punctured disk $D^*(z_0, r)$.
 - a) Show that for all $n \geq 1$ and for all closed curves $\Gamma \subset D^*(z_0, r)$, we have

$$\int_{\Gamma} f^{(n)}(z)dz = 0.$$

b) Show that z_0 is not a pole of $g(z) = e^{f(z)}$.