Graduate Preliminary Examination Complex Analysis Duration: 3 hours

1. Calculate $\int_{7} \frac{w^3+1}{w(w^4+w^3+2w^2+1)} dw$, where C is the circle of radius 1/3 centered at 0, traced once in the clockwise direction.

2.Let $\mathbb{D}=\{z:|z|<1\}$. Prove that there is **no** holomorphic function $f:\mathbb{D}\to\mathbb{D}$ satisfying $f(\frac{i}{2})=0,$ $f(\frac{1}{3})=0,$ and $f(0)=\frac{1}{5}.$

3. Suppose f is holomorphic on $\{z:|z|<1\}=\mathbb{D}$. Prove that there is a sequence $\{z_n\}$ in \mathbb{D} such that $|z_n|\to 1$ and $\{f(z_n)\}$ is bounded. (Hint: Consider the zeroes of f.)

4. Show that $\prod_{n=0}^{\infty}(1+z^{(2n)})=\frac{1}{1-z}$ for each $z\in\mathbb{D}=\{z:|z|<1\}$. Prove that convergence is uniform on compact subsets of \mathbb{D} , but not uniform on \mathbb{D} .