PRELIMINARY EXAM - Feb.2012
Complex Analysis

Duration: 3 hr.

<table>
<thead>
<tr>
<th>Q.1</th>
<th>Q.2</th>
<th>Q.3</th>
<th>Q.4</th>
<th>Total</th>
</tr>
</thead>
</table>

1. \((5+7+13=25\ \text{pt.})\) Let \(n \in \mathbb{N}\) with \(n \geq 2\) and \(\omega = e^{\pi i/n}\).

 (A) Show that \(\omega^{\frac{n(n-1)}{2}} = i^{n-1}\).

 (B) Show that \(\frac{x^n - 1}{x - 1} = \prod_{k=1}^{n-1} (x - \omega^{2k})\) for every \(x \neq 1\).

 (C) Prove that
 \[
 \prod_{k=1}^{n-1} \cos \left(\frac{k\pi}{n} \right) = \begin{cases}
 0 & \text{if } n \text{ is even} \\
 \frac{(-1)^{\frac{n-1}{2}}}{2^{n-1}} & \text{if } n \text{ is odd}
 \end{cases}
 \]

2. \((4+8+13=25\ \text{pt.})\)

 (A) Prove that \(|e^z| = e^{\text{Re}(z)}\)

 (B) Let \(f\) be an entire function such that \(|f(z)| \leq e^{\text{Re}(z)}\). Show that there exists a constant \(a \in \mathbb{C}\) such that
 \(f(z) = ae^z\).

 (C) Let \(g\) be an entire function such that \(g(z+1) = -g(z)\), \(g(0) = 0\) and
 \(|g(z)| \leq e^{\text{Im}(z)}\).

 Show that there exists a constant \(b \in \mathbb{C}\) such that
 \(g(z) = b \sin (\pi z)\).

3. \((8+10+7=25\ \text{pt.})\) Let \(\Omega \subset \mathbb{C}\) be a domain and \(f(z)\) be a meromorphic function in \(\Omega\) with a non-empty set \(W\) of poles. Choose an arbitrary point \(z_0 \in \Omega - W\).

 a) Show that \(W\) is a discrete subset of \(\Omega\).

 Give an example where \(\Omega\) is bounded and \(W\) is an infinite set.

 b) Show that if the residue of \(f(z)\) at each pole vanishes, then
• for \(z \in \Omega - W \) the integral

\[
F(z) = \int_{z_0}^{z} f(u)du
\]

is independent of the path \(\Gamma \subset \Omega - W \) connecting \(z_0 \) and \(z \), and
• \(F(z) \) defines an analytic function in \(\Omega - W \).

c) True or false? Explain.

\(F(z) \) is meromorphic in \(\Omega \) with \(W \) as the set of poles.

4. (10+8+7 = 25 pt.) Let \(g(z) \) be a non-constant entire periodic function, \(f(z) \) be a meromorphic function in \(\mathbb{C} \).

a) Let \(z_0 \) be a pole of \(f(z) \). Show that the function \(g \circ f \) has an essential singularity at \(z_0 \) (that is, \(\lim_{z \to z_0} (g \circ f(z)) \) does not exist).

b) For \(g(z) = e^z \), prove the result in (a) by using the argument principle.

c) Show that if \(f(z) \) has at least two poles then \(f \circ g \) has infinitely many poles.