PRELIMINARY EXAM - Feb.2012 Complex Analysis

Duration: 3 hr.

Г	$\overline{Q.1}$	Q.2	Q.3	Q.4	Total
Γ					

1. (5+7+13=25 pt.) Let $n \in \mathbb{N}$ with $n \geq 2$ and $\omega = e^{\pi i/n}$.

(A) Show that
$$\omega^{\frac{n(n-1)}{2}} = i^{n-1}$$

(B) Show that
$$\frac{x^n-1}{x-1} = \prod_{k=1}^{n-1} \left(x-\omega^{2k}\right)$$
 for every $x \neq 1$.

(C) Prove that

$$\prod_{k=1}^{n-1} \cos\left(\frac{k\pi}{n}\right) = \begin{cases} 0 & \text{if } n \text{ is even} \\ \frac{(-1)^{\frac{n-1}{2}}}{2^{n-1}} & \text{if } n \text{ is odd} \end{cases}$$

2. (4 + 8 + 13 = 25 pt.)

(A) Prove that $|e^z| = e^{\operatorname{Re}(z)}$

(B) Let f be an entire function such that $|f(z)| \le e^{\text{Re}(z)}$. Show that there exists a constant $a \in \mathbb{C}$ such that

$$f(z) = ae^z.$$

(C) Let g be an entire function such that g(z+1)=-g(z), g(0)=0 and $|g(z)|\leq e^{\pi|\operatorname{Im}(z)|}.$

Show that there exists a constant $b \in \mathbb{C}$ such that

$$g(z) = b \sin \left(\pi z\right) .$$

3. (8+10+7=25 pt.) Let $\Omega\subset\mathbb{C}$ be a domain and f(z) be a meromorphic function in Ω with a non-empty set W of poles. Choose an arbitrary point $z_0\in\Omega-W$.

a) Show that W is a discrete subset of Ω .

Give an example where Ω is bounded and W is an infinite set.

b) Show that if the residue of f(z) at each pole vanishes, then

• for $z \in \Omega - W$ the integral

$$F(z) = \int_{z_0}^z f(u) du$$

is independent of the path $\Gamma \subset \Omega - W$ connecting z_0 and z, and

- F(z) defines an analytic function in ΩW .
- c) True or false? Explain.

F(z) is meromorphic in Ω with W as the set of poles.

- 4. (10+8+7=25 pt.) Let g(z) be a non-constant entire periodic function, f(z) be a meromorphic function in \mathbb{C} .
 - a) Let z_0 be a pole of f(z). Show that the function $g \circ f$ has an essential singularity at z_0 (that is, $\lim_{z\to z_0}(g\circ f(z))$ does not exist).
 - b) For $g(z) = e^z$, prove the result in (a) by using the argument principle.
 - c) Show that if f(z) has at least two poles then $f \circ g$ has infinitely many poles.