Preliminary Exam - February, 2015 COMPLEX ANALYSIS

Each question is 25 pt.

1. a) Show that the function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, f(x, y)=(\sin (2 x+y), \cos (2 x+y))
$$

is differentiable everywhere.
Determine all points, if any, where f has a local differentiable inverse.
b) Show that as a complex valued function of the complex variable $z=x+i y$, $f(z)$ is nowhere analytic by
(i) checking the Cauchy-Riemann conditions,
(ii) using the topological mapping defined by f.
c) Can you find an entire function $g(z)$ such that $\operatorname{Re}(g(z))=\sin (2 x+y)$? Explain.
2. Let f, g be two entire functions which have simple zeros precisely at

$$
z_{n}=\frac{(2 n+1)}{2} \pi, n \in \mathbb{Z}
$$

and no other zeros.
a) Show that the function $\frac{f}{g}(z)$ is entire.
b) Show that $\frac{f}{g}(z)=e^{h(z)} \quad$ for some entire function $h(z)$.
c) For $N \geq 1$, let $a_{N}=\int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z$ where γ is the circle $|z|=1+N \pi$.

True or false ? Explain.
The series $\sum_{1}^{\infty} \frac{1}{a_{N}^{1+r}}$ converges for all $r>0$.
3. a) Show that if $\Omega \subset \mathbb{C}$ is a domain such that $\operatorname{Aut}(\Omega)$ is a finite group, then Ω is not simply connected.
b) True or false ? Give an example or disprove the statement.

There exists an analytic function $f: \mathbb{C}-0 \rightarrow \mathbb{C}$ such that $f(\mathbb{C}-0)=\mathbb{C}$ and f has an essential singularity at $z=0$.
c) Show that the family of functions $f_{n}(z)=z^{n}, n \geq 1$ is normal in $D(0 ; 1)$, but not in any region which contains a point on the unit circle.
4. Let $S=\left\{z_{n} \in \mathbb{C}: n \geq 1\right\}$ be a discrete set and let

$$
f: \mathbb{C}-S \rightarrow \mathbb{C}
$$

be a holomorphic function.
a) Suppose that $\operatorname{Res}\left(f ; z_{1}\right)=0$. Show that there exist $R>0$ and a holomorphic function $g(z)$ in $D^{*}\left(z_{1} ; R\right)$ such that $f(z)=\frac{d g}{d z}(z)$.
b) Show that $f(z)=\frac{d h}{d z}(z)$ for some analytic function $h(z)$ in $\mathbb{C}-S$ if and only if $\operatorname{Res}\left(f ; z_{n}\right)=0$, for all $n \geq 1$.

