TMS - Complex Analysis Feb. 2018

Each question is 25 pts.

Notation:

$$D = \{z : |z| < 1\}, \ D^* = \{z : 0 < |z| < 1\}, \ \mathbb{C}^* = \mathbb{C} - \{0\}, \ \mathbb{P}^1 = \mathbb{C} \cup \{\infty\}.$$

 $\mathcal{H},\overline{\mathcal{H}}$ denote respectively, the upper half plane and its closure in \mathbb{R}^2 .

 $\frac{\partial(u,v)}{\partial(x,y)}(p)$ is the jacobian at p of the function $(x,y)\mapsto (u(x,y),v(x,y))$.

- 1. Let f(z) = u(x, y) + iv(x, y) be a non-constant holomorphic function in a connected region $\Omega \subset \mathbb{C}$.
 - a) Show that the set

$$S = \{p \in \Omega : \frac{\partial(u,v)}{\partial(x,y)}(p) = 0\}$$

is discrete in Ω .

- b) Show by an example that even if Ω is bounded, S need not be a finite set.
- c) If $z_0 \in S$ and $\frac{d^2 f}{dz^2}(z_0) \neq 0$, then in a disc around z_0 we can write

$$f(z) - f(z_0) = \omega(z)^2$$

for a suitable one-to-one holomorphic function ω of z.

2. a) By using complex analysis, prove that there does not exist a pair of non-constant continuous functions $f_j: \overline{\mathcal{H}} \to \mathbb{R}, \ j=1,2$ which satisfy the following conditions:

In \mathcal{H} , f_1, f_2 are harmonic conjugate functions and $|f_1|, |f_2|$ are bounded.

At least one of the functions f_1, f_2 vanishes identically on the boundary of $\overline{\mathcal{H}}$.

- b) Give an example of a pair of harmonic conjugate functions in \mathcal{H} which satisfy all the conditions in (a) except the boundedness of $|f_1|$, $|f_2|$.
- c) Give an example of a pair of harmonic conjugate functions in \mathcal{H} which satisfy all the conditions in (a) except the vanishing of f_1 or f_2 on the boundary.
- 3. Let $\Omega \neq \mathbb{C}$ be a simply connected region and $z_0 \in \Omega$ be an arbitrary point.
 - a) True or false? Explain.

For each positive real number r there exists a unique analytic isomorphism $f_r: \Omega \to D$ such that $f_r(z_0) = 0$, $f'(z_0) = r$.

1

b) Fix an isomorphism $f: \Omega \to D$, $f(z_0) = 0$. Show that

$$G = \{ \phi \in Aut_{hol}(\Omega) : \phi(z_0) = z_0 \}$$

consists of maps

$$\phi: \Omega \to \Omega, \ \phi(z) = f^{-1}(e^{i\theta}f(z)), \ \theta \in [0, 2\pi).$$

- c) Show that for any $z_1 \in \Omega$, $z_1 \neq z_0$ we have $\phi \in Aut_{hol}(\Omega)$ such that $\phi(z_1) = z_0$. Is ϕ unique?
- 4. f is a meromorphic function in \mathbb{C} with poles at z_j , j = 1, ..., n and is holomorphic elsewhere. Suppose that for any circle $C_j : |z z_j| = r$ which does not pass through any pole of f and encloses only z_j and no zeros of f(z), we have

$$\frac{1}{2\pi i} \int_{C_j} \frac{f'(z)}{f(z)} dz = -j.$$

- a) Suppose that f extends to a meromorphic function $\overline{f}: \mathbb{P}^1 \to \mathbb{P}^1$.
 - Determine the minimum possible value of $d(\overline{f})$ (the degree of \overline{f}).
 - True or false ? Why ? We have $d(1/\overline{f}) = d(\overline{f})$.
- b) Determine the general form of f
 - if $g(z) = \prod_{1}^{n} (z z_{j})^{j} f(z)$ is holomorphic at ∞ .
 - if $g(z) = \prod_{1}^{n} (z z_j)^j f(z)$ has no zeros in \mathbb{C} .