1. **a)** Show that a one-to-one immersion of a **compact** manifold is an imbedding.

b) Explain, in full details, why the map \(\phi : (-\pi, \pi) \to \mathbb{R}^2, \phi(s) = (\sin(2s), \sin(s)) \) shows that the conclusion in part (a) is false if \(X \) is not compact.

2. Let \(SL_n(\mathbb{R}) \) denote the \(n \times n \) real matrices with determinant 1.

 a) Show that \(SL_n(\mathbb{R}) \) is a submanifold of the \(n \times n \) matrices \(M_n(\mathbb{R}) \).

 b) Show that the tangent space to \(SL_n(\mathbb{R}) \) at the identity matrix \(I \) is \(T_I SL_n(\mathbb{R}) = \{ A \in M_n(\mathbb{R}) : \text{trace}(A) = 0 \} \).

3. **a)** What is meant by an orientation on a manifold?

 b) Show that \(S^n = \{ \mathbf{x} \in \mathbb{R}^{n+1} : |\mathbf{x}| = 1 \} \) is an oriented manifold, by defining an orientation on it.

 c) Show that the antipodal map \(S^n \to S^n, \mathbf{x} \mapsto -\mathbf{x} \) is orientation preserving if and only if \(n \) is odd.

 d) Using (c), or otherwise show that \(\mathbb{R}P^n \) is orientable if and only if \(n \) is odd.

4. **a)** Show that \(X = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1 \} \) is a closed submanifold of \(\mathbb{R}^3 \).

 b) Verify that the restriction \(\omega|_X \) of \(\omega = \frac{xdy - ydx}{x^2 + y^2} \) is a closed 1-form on \(X \).

 c) Calculate \(\int_S \omega|_X \), where \(S \) is the circle \(\{(x, y, 3) : x^2 + y^2 = 1 \} \subset X \).

 Is \(\omega|_X \) an exact form? Why?

 d) Consider the mapping \(\Psi : \mathbb{R}^2 \to X, \Psi((s, t)) = (\cos(s), \sin(s), t) \). Show that \(\Psi \) is a differentiable map and that the form \(\Psi^*(\omega|_X) \) is exact.