1. a) Let $\omega = (x + y) \, dx \wedge dy$, a 2-form on \mathbb{R}^2, and $f : \mathbb{R}^3 \to \mathbb{R}^2$ be given by $f(r, s, t) = (r - t + s, e^r + t)$. Calculate $f^*(\omega)$, the pullback of ω by f.

b) Consider the vector field on the plane

$$X = 2 \frac{\partial}{\partial x} - xy \frac{\partial}{\partial y}.$$

Calculate $X(g)$ for any smooth function $g : \mathbb{R}^2 \to \mathbb{R}$.

c) Calculate the bracket of the vector fields, $[X, Y]$, where

$$X = 2 \frac{\partial}{\partial x} - xy \frac{\partial}{\partial y} \quad \text{and} \quad Y = e^y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}.$$

2. a) Consider the real projective plane as the quotient space

$$P : S^2 \to \mathbb{R}P^2 = S^2 / \sim, \quad (x, y, z) \mapsto [x : y : z],$$

where \sim is the equivalence relation on the unit two sphere S^2 defined by, $(x_1, y_1, z_1) \sim (x_2, y_2, z_2)$ if and only if $(x_1, y_1, z_1) = -(x_2, y_2, z_2)$. Show that

$$F : \mathbb{R}P^2 \to \mathbb{R}^5, \quad [x : y : z] \mapsto (x^2, y^2, xy, yz, zx),$$

is a smooth embedding.

b) Let $\sigma : S^2 \to S^2$ be the antipodal map given by

$$\sigma(x, y, z) = -(x, y, z).$$
Show that for the above map \(P : S^2 \to \mathbb{R}P^2 \) we have \(P = P \circ \sigma \). Let
\[\omega = x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy \]
\(\) a 2-form on \(S^2 \). Prove that
\(\omega \neq P^*(\nu) \), for any 2-form \(\nu \) on the real projective plane.

3. a) Let \(f : K \to \mathbb{R}^n \) and \(g : L \to \mathbb{R}^n \) be embeddings of smooth manifolds, so that \(\dim K + \dim L < n \). Consider the smooth mapping
\[\phi : K \times L \to \mathbb{R}^n, \quad (p, q) \mapsto f(p) - g(q), \quad (p, q) \in K \times L \] .
Show that a vector \(v \in \mathbb{R}^n \) is a regular value for \(\phi \) if and only if the images of the maps \(f : K \to \mathbb{R}^n \) and
\[g + v : L \to \mathbb{R}^n, \quad q \mapsto g(q) + v \]
are disjoint.

b) Let \(f : S^1 \to \mathbb{R}^3 \) and \(g : S^1 \to \mathbb{R}^3 \) be embeddings of the circle into \(\mathbb{R}^3 \). Using Part (a) conclude that for any \(\epsilon > 0 \) there is a vector \(v \in \mathbb{R}^3 \) with \(\|v\| < \epsilon \), so that the embedded circles \(f(S^1) \) and
\[g(S^1) + v = \{g(q) + v \mid q \in S^1\} \]
are disjoint.

4. A two-form \(\omega \) on an oriented smooth four manifold, \(M^4 \), is called symplectic if it is both closed, \(d\omega = 0 \), and satisfies
\[(\omega \wedge \omega)(p)(e_1, e_2, e_3, e_4) > 0, \]
at any point \(p \in M \), where \(e_i, \ i = 1, 2, 3, 4 \), are any set ordered basis (giving the chosen orientation of the manifold) vectors in \(T_p M^4 \).

a) Show that the two form \(\omega = dx_1 \wedge dx_2 + dx_3 \wedge dx_4 \) is a symplectic form on \(\mathbb{R}^4 \).

b) Show that the above form satisfies \(\omega = d\alpha \), for the 1-form
\[\alpha = x_1 \, dx_2 + x_3 \, dx_4 \] .

c) Show that a symplectic form \(\nu \) on a compact oriented four dimensional manifold, \(M^4 \), cannot be an exact form (Hint: Use Stokes theorem).