M.E.T.U
 Department of Mathematics
 Preliminary Exam - Sep. 2011
 Geometry

Duration : 3 hr .
Each question is 25 pt.

1. a) Let $\omega=(x+y) d x \wedge d y$, a 2-form on \mathbb{R}^{2}, and $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be given by $f(r, s, t)=\left(r-t+s, e^{r}+t\right)$. Calculate $f^{*}(\omega)$, the pullback of ω by f.
b) Consider the vector field on the plane

$$
X=2 \frac{\partial}{\partial x}-x y \frac{\partial}{\partial y} .
$$

Calculate $X(g)$ for any smooth function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$.
c) Calculate the bracket of the vector fields, $[X, Y]$, where $X=2 \frac{\partial}{\partial x}-x y \frac{\partial}{\partial y}$ and $Y=e^{y} \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}$.
2. a) Consider the real projective plane as the quotient space

$$
P: S^{2} \rightarrow \mathbb{R} P^{2}=S^{2} / \sim,(x, y, z) \mapsto[x: y: z]
$$

where \sim is the equivalence relation on the unit two sphere S^{2} defined by, $\left(x_{1}, y_{1}, z_{1}\right) \sim\left(x_{2}, y_{2}, z_{2}\right)$ if and only if $\left(x_{1}, y_{1}, z_{1}\right)=-\left(x_{2}, y_{2}, z_{2}\right)$. Show that

$$
F: \mathbb{R} P^{2} \rightarrow \mathbb{R}^{5},[x: y: z] \mapsto\left(x^{2}, y^{2}, x y, y z, z x\right)
$$

is a smooth embedding.
b) Let $\sigma: S^{2} \rightarrow S^{2}$ be the antipodal map given by

$$
\sigma(x, y, x)=-(x, y, z)
$$

Show that for the above map $P: S^{2} \rightarrow \mathbb{R} P^{2}$ we have $P=P \circ \sigma$. Let $\omega=x d y \wedge d z+y d z \wedge d x+z d x \wedge d y$ a 2-form on S^{2}. Prove that $\omega \neq P^{*}(\nu)$, for any 2 -form ν on the real projective plane.
3. a) Let $f: K \rightarrow \mathbb{R}^{n}$ and $g: L \rightarrow \mathbb{R}^{n}$ be embeddings of smooth manifolds, so that $\operatorname{dim} K+\operatorname{dim} L<n$. Consider the smooth mapping

$$
\phi: K \times L \rightarrow \mathbb{R}^{n},(p, q) \mapsto f(p)-g(q),(p, q) \in K \times L .
$$

Show that a vector $v \in \mathbb{R}^{n}$ is a regular value for ϕ is and only if the images of the maps $f: K \rightarrow \mathbb{R}^{n}$ and

$$
g+v: L \rightarrow \mathbb{R}^{n}, q \mapsto g(q)+v
$$

are disjoint.
b) Let $f: S^{1} \rightarrow \mathbb{R}^{3}$ and $g: S^{1} \rightarrow \mathbb{R}^{3}$ be embeddings of the circle into \mathbb{R}^{3}. Using Part (a) conclude that for any $\epsilon>0$ there is a vector $v \in \mathbb{R}^{3}$ with $\|v\|<\epsilon$, so that the embedded circles $f\left(S^{1}\right)$ and

$$
g\left(S^{1}\right)+v=\left\{g(q)+v \mid q \in S^{1}\right\}
$$

are disjoint.
4. A two-form ω on an oriented smooth four manifold, M^{4}, is called symplectic if it is both closed, $d \omega=0$, and satisfies

$$
(\omega \wedge \omega)(p)\left(e_{1}, e_{2}, e_{3}, e_{4}\right)>0
$$

at any point $p \in M$, where $e_{i}, i=1,2,3,4$, are any set ordered basis (giving the chosen orientation of the manifold) vectors in $T_{p} M^{4}$.
a) Show that the two form $\omega=d x_{1} \wedge d x_{2}+d x_{3} \wedge d x_{4}$ is a symplectic form on \mathbb{R}^{4}.
b) Show that the above form satisfies $\omega=d \alpha$, for the 1 -form

$$
\alpha=x_{1} d x_{2}+x_{3} d x_{4} .
$$

c) Show that a symplectic form ν on a compact oriented four dimensional manifold, M^{4}, cannot be an exact form (Hint: Use Stokes theorem).

