M.E.T.U

Department of Mathematics Preliminary Exam - Sep. 2011 Geometry

Duration : 3 hr.

Each question is 25 pt.

- 1. a) Let $\omega = (x + y) \ dx \wedge dy$, a 2-form on \mathbb{R}^2 , and $f : \mathbb{R}^3 \to \mathbb{R}^2$ be given by $f(r, s, t) = (r - t + s, e^r + t)$. Calculate $f^*(\omega)$, the pullback of ω by f.
 - b) Consider the vector field on the plane

$$X = 2\frac{\partial}{\partial x} - xy\frac{\partial}{\partial y}.$$

Calculate X(g) for any smooth function $g: \mathbb{R}^2 \to \mathbb{R}$.

c) Calculate the bracket of the vector fields, [X, Y], where $X = 2\frac{\partial}{\partial x} - xy\frac{\partial}{\partial y}$ and $Y = e^y\frac{\partial}{\partial x} + x\frac{\partial}{\partial y}$.

2. a) Consider the real projective plane as the quotient space

$$P:S^2 \to \mathbb{R}P^2 = S^2/\sim, \ (x,y,z) \mapsto [x:y:z]$$

where \sim is the equivalence relation on the unit two sphere S^2 defined by, $(x_1, y_1, z_1) \sim (x_2, y_2, z_2)$ if and only if $(x_1, y_1, z_1) = -(x_2, y_2, z_2)$. Show that

$$F:\mathbb{R}P^2\to\mathbb{R}^5,\ [x:y:z]\mapsto(x^2,y^2,xy,yz,zx),$$

is a smooth embedding.

b) Let $\sigma: S^2 \to S^2$ be the antipodal map given by

$$\sigma(x, y, x) = -(x, y, z).$$

Show that for the above map $P: S^2 \to \mathbb{R}P^2$ we have $P = P \circ \sigma$. Let $\omega = x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy$ a 2-form on S^2 . Prove that $\omega \neq P^*(\nu)$, for any 2-form ν on the real projective plane.

3. a) Let $f: K \to \mathbb{R}^n$ and $g: L \to \mathbb{R}^n$ be embeddings of smooth manifolds, so that dim $K + \dim L < n$. Consider the smooth mapping

$$\phi: K \times L \to \mathbb{R}^n, \ (p,q) \mapsto f(p) - g(q), \ (p,q) \in K \times L \ .$$

Show that a vector $v \in \mathbb{R}^n$ is a regular value for ϕ is and only if the images of the maps $f: K \to \mathbb{R}^n$ and

$$g + v : L \to \mathbb{R}^n, \ q \mapsto g(q) + v$$

are disjoint.

b) Let $f: S^1 \to \mathbb{R}^3$ and $g: S^1 \to \mathbb{R}^3$ be embeddings of the circle into \mathbb{R}^3 . Using Part (a) conclude that for any $\epsilon > 0$ there is a vector $v \in \mathbb{R}^3$ with $||v|| < \epsilon$, so that the embedded circles $f(S^1)$ and

$$g(S^{1}) + v = \{g(q) + v \mid q \in S^{1}\}$$

are disjoint.

4. A two-form ω on an oriented smooth four manifold, M^4 , is called symplectic if it is both closed, $d\omega = 0$, and satisfies

$$(\omega \wedge \omega)(p)(e_1, e_2, e_3, e_4) > 0,$$

at any point $p \in M$, where e_i , i = 1, 2, 3, 4, are any set ordered basis (giving the chosen orientation of the manifold) vectors in $T_p M^4$.

a) Show that the two form $\omega = dx_1 \wedge dx_2 + dx_3 \wedge dx_4$ is a symplectic form on \mathbb{R}^4 .

b) Show that the above form satisfies $\omega = d\alpha$, for the 1-form

$$\alpha = x_1 \ dx_2 + x_3 \ dx_4 \ .$$

c) Show that a symplectic form ν on a compact oriented four dimensional manifold, M^4 , cannot be an exact form (Hint: Use Stokes theorem).