METU MATHEMATICS DEPARTMENT PRELIMINARY EXAMINATION GEOMETRY MATH 505

SEPTEMBER 17, 2014

1.) Let ω be the closed 1-form

$$\omega = \frac{x \, dy - y \, dx}{x^2 + y^2} \in \Omega^1(\mathbb{R}^2 - \{0\}).$$

- a) Calculate the integral $\int_{S^1} \omega$, where S^1 is the unit circle in the plane.
- b) Use Stokes' Theorem to show that the integral $\int_C \omega = 0$, where $C = \{(x,y) \mid (x-5)^2 + y^2 = 1\}.$
- c) Is there a smooth map $\phi: S^1 \times [0,1] \to \mathbb{R}^2 \{(0,0)\}$, where $\phi(S^1 \times \{0\}) = S^1$ and $\phi(S^1 \times \{1\}) = C$, so that ϕ is a diffeomorphism when restricted to each of the boundary components of the cylinder? Justify your answer!
- 2.) Consider the Möbius band as the following quotient manifold

$$MB = \mathbb{R} \times (-1,1) / (x,y) \sim (x+1,-y)$$
.

a) Let $P: \mathbb{R} \times (-1,1) \to MB$ be the quotient map and

$$\sigma: \mathbb{R} \times (-1,1) \to \mathbb{R} \times (-1,1)$$

be the map given by $\sigma(x,y) = (x+1,-y)$. Show that for any smooth function $f: \mathbb{R} \times (-1,1) \to \mathbb{R}$ satisfying $f = -f \circ \sigma$, there is some $(x_0,y_0) \in \mathbb{R} \times (-1,1)$ with $f(x_0,y_0) = 0$.

- b) Use Part (a) to show that for any 2-form ω on the Möbius band there is some $(x_0, y_0) \in \mathbb{R} \times (-1, 1)$ with $\omega(P(x_0, y_0)) = 0$. Conclude that MB is not orientable.
- 3.) Show that the subset \mathbb{R}^3 given by

$$T^{2} = \{(x, y, z) \in \mathbb{R}^{3} \mid [(x^{2} + y^{2} + z^{2}) + 3]^{2} = 16(x^{2} + y^{2})\}$$

is a submanifold. Show that it is diffeomorphic to the to the submanifold

$$\{(x_1,y_1,x_2,y_2)\in\mathbb{R}^4\mid x_1^2+y_1^2=1=x_2^2+y_2^2\}$$
 via the map $F(x,y,z)=(\sqrt{x^2+y^2}-2,z,\frac{x}{\sqrt{x^2+y^2}},-\frac{y}{\sqrt{x^2+y^2}}).$ Determine F^{-1} .

- 4.) Let $\omega = f(x,y)dx + g(x,y)dy$ be a one-form on $\mathbb{R}^2 \{(0,0)\}$.
- a) Let C_R be the circle with center at the origin and radius R>0, whose parametrization is given by $x=R\cos\theta,\,y=R\sin\theta,\,0\leq\theta\leq2\pi.$ Assume that $|f(x,y)|\leq\frac{1}{\sqrt[4]{x^2+y^2}}$ and $|g(x,y)|\leq\frac{1}{\sqrt[4]{x^2+y^2}}$, for all $(x,y)\in\mathbb{R}^2-\{(0,0)\}$. Show that $|\int_{C_R}\omega|\leq 4\pi\sqrt{R}$.
- b) Assume that the one-form ω is also closed. Use Stokes' theorem to show that $\int_{G_R} \omega = \int_{G_1} \omega$, for all R > 0.
- c) Show that $\int_{C_R} \omega = 0$, for all R > 0. Conclude that ω is an exact form.