GEOMETRY TMS EXAM

October 01, 2015
Duration: 3 hours.
(1) Let $f: \mathbb{R}^{3} \mapsto \mathbb{R}^{4}$ be the map defined by $f(x, y, z)=\left(x^{2}-y^{2}, x y, x z, y z\right)$. Consider $\mathbb{R} P^{2}$ as S^{2} / \sim where $p \sim-p$ for all $p \in S^{2}$.
a) Write down a chart for $\mathbb{R} P^{2}$.
b) Let $F: \mathbb{R} P^{2} \mapsto \mathbb{R}^{4}$ induced by f. Find F_{*}.
c) Is F embedding? Why?
(2) a) Show that the set $S L(2, \mathbb{R})$ of 2×2 real matrices whose determinant is equal to 1 is a submanifold of \mathbb{R}^{4}. What is its dimension?
b) Prove that the tangent space to $S L(2, \mathbb{R})$ at the identity matrix $A=I$ may be identified with the set of matrices of zero trace.
(3) Let M be an even dimensional manifold, $\operatorname{dim} M=2 n$. A differential form $\omega \in \Omega^{2}(M)$ is said to be non-degenerate if

$$
\wedge^{n} \omega:=\omega \wedge \cdots \wedge \omega \in \Omega^{2 n}(M)
$$

is a volume form. Show that on a compact orientable manifold M without boundary a non-degenerate 2 -form ω cannot be exact.
(4) Let $\omega=\frac{x d y-y d x}{2 \pi} \in \Omega^{1}\left(\mathbb{R}^{2}\right)$ and $f: S^{1} \longrightarrow S^{1}$ defined by $f(z)=z^{k}, k \in \mathbb{Z}_{+}$. Calculate

$$
\int_{S^{1}} f^{*}(w)
$$

(5) On \mathbb{R}^{4} with coordinates (x, y, z, w) consider the following vector fields; $X_{1}=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}$ and $X_{2}=y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}$ and 2-form $\omega=x d x \wedge d y+z d z \wedge d w$. Compute the following:
a) $\left[X_{1}, X_{2}\right]$
b) $d \omega$
c) $\Phi^{*}(\omega)$ where $\Phi: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{4}$ is the map $\Phi(t, u)=(t \cos t, u, t \sin t, u)$.

