GEOMETRY TMS EXAM October 01, 2015

Duration: 3 hours.

(1) Let f: R³ → R⁴ be the map defined by f(x, y, z) = (x² - y², xy, xz, yz). Consider RP² as S²/~ where p ~ -p for all p ∈ S².
a) Write down a chart for RP².
b) Let F: RP² → R⁴ induced by f. Find F_{*}.
c) Is F embedding? Why?

(2) a) Show that the set $SL(2,\mathbb{R})$ of 2×2 real matrices whose determinant is equal to 1 is a submanifold of \mathbb{R}^4 . What is its dimension?

b) Prove that the tangent space to $SL(2, \mathbb{R})$ at the identity matrix A = I may be identified with the set of matrices of zero trace.

(3) Let M be an even dimensional manifold, dim M = 2n. A differential form $\omega \in \Omega^2(M)$ is said to be non-degenerate if

$$\wedge^n \omega := \omega \wedge \dots \wedge \omega \in \Omega^{2n}(M)$$

is a volume form. Show that on a compact orientable manifold M without boundary a non-degenerate 2-form ω cannot be exact.

(4) Let
$$\omega = \frac{xdy - ydx}{2\pi} \in \Omega^1(\mathbb{R}^2)$$
 and $f: S^1 \longrightarrow S^1$ defined by $f(z) = z^k, k \in \mathbb{Z}_+$. Calculate $\int_{S^1} f^*(w).$

(5) On ℝ⁴ with coordinates (x, y, z, w) consider the following vector fields; X₁ = x ∂/∂y - y ∂/∂x and X₂ = y ∂/∂z - z ∂/∂y and 2-form ω = xdx ∧ dy + zdz ∧ dw. Compute the following:
a) [X₁, X₂]

- b) $d\omega$
- c) $\Phi^*(\omega)$ where $\Phi: \mathbb{R}^2 \longrightarrow \mathbb{R}^4$ is the map $\Phi(t, u) = (t \cos t, u, t \sin t, u)$.