Graduate Preliminary Examination Geometry Duration: 3 hours

- 1. Let S^2 be the unit circle in \mathbb{R}^3 . Considering S^2 oriented by outer normal field
- a) exhibit a positively oriented basis of the tangent space for each point of S^2 ,
- b) determine whether the reflection $F:S^2\to S^2$ which is given by F(x,y,z)=(x,-y,z) is orientation preserving or not.
- $\textbf{2.} \ \, \text{Let} \ \, X,Y \ \, \text{be smooth vector fields on a smooth manifold} \ \, M. \ \, \text{Then} \ \, XY \ \, \text{defined by} \ \, (XY)(f) = X(Yf) \ \, \text{makes sense as a smooth operator.} \ \, \text{We know} \ \, \text{that} \ \, [X,Y] = XY YX \ \, \text{is a smooth vector field.}$
- a) Show that [fX,gY]=fg[X,Y]+f(Xg)Y-g(Yf)X for all smooth real valued functions f and g on M.
- b) Let $(U;x_1,\cdots,x_n)$ be a coordinate neighborhod on M and let $\{\frac{\partial}{\partial z_1},\cdots,\frac{\partial}{\partial z_n}\}$ be the associated coordinate frames. Show that $[\frac{\partial}{\partial z_i},\frac{\partial}{\partial z_j}]=0$ for each i,j with $1\leq i\leq n, 1\leq j\leq n$.
- c) Assuming that $\dim M=2$, compute the components of [X,Y] in terms of the components of X and Y with respect to a coordinate neighborhood.
- **3.** Let $F:M\to N$ be a smooth map, $q\in N$ a regular value and $L=F^{-1}(q)\subset M$. Show that for any $p\in L$ the tangent space T_pL is the kernel of the induced map $F_s:T_pM\to T_qN$.
 - 4. Let w be the 2-form on $\mathbb{R}^3\setminus(0,0,0)$ given by $w=d(\frac{1}{x^2+y^2+z^2}dy).$
- a) Find the local expression of the pull back of w on M with respect to the local parametrization

$$\begin{array}{rcl} x&=&2\cos~u~\left(1+\cos v\right)-2\\ &y&=&2\sin~u~\left(1+\cos v\right)\\ &z&=&\sin v&u,v\in(0,2\pi).\\ \end{array}$$
b) Find $\int_{M}w.$