Differentiable Manifolds

TMS EXAM
11 February 2013

Duration: 3 hr .

1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)=x^{3}+x y+y^{3}+1
$$

For which of the points $p=(0,0), p=(1 / 3,1 / 3), p=(-1 / 3,-1 / 3)$ is $f^{-1}(f(p))$ an imbedded submanifold in \mathbb{R}^{2} ?
2. Let M be the hyperboloid of two sheets given by $y^{2}-z^{2}-x^{2}=1$.
(a) Let $p \in M$. Explain how we can identify $T_{p} M$ by a subspace of \mathbb{R}^{3} using a chart at p.
(b) Describe $T_{p}(M)$ as a subspace of \mathbb{R}^{3} if $p=(0,2, \sqrt{3})$.
(c) Determine whether the map which assigns to each point $q=(x, y, z)$ the vector $(y, x+$ $z, y)$ is a smooth vector field on M.
3. Let $F: M \rightarrow N$ be a smooth function between the manifolds M and N and let a be a smooth function on M.
(a) Show that $F^{*}(d a)=d\left(F^{*}(a)\right)$
(b) Verify the formula $F^{*} d=d F^{*}$ on the forms of type $\phi_{1} \wedge \phi_{2}$ where ϕ_{1} and ϕ_{2} are 1-forms.
(c) Let $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be given by

$$
g(x, y, z)=\left(x y, x^{2} y z\right)
$$

Compute $g^{*}(2 x y d x \wedge d y)$
4. Let

$$
\alpha=\frac{1}{2 \pi} \frac{x d y-y d x}{x^{2}+y^{2}}
$$

(a) Prove that α is a closed 1-form on $\mathbb{R}^{2} \backslash 0$
(b) Compute the integral of α over the unit circle S^{1} ?
(c) How does this shows that α is not exact?

