Differentiable Manifolds TMS EXAM 11 February 2013

Duration: 3 hr.

1. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = x^3 + xy + y^3 + 1$$
.

For which of the points p = (0,0), p = (1/3, 1/3), p = (-1/3, -1/3) is $f^{-1}(f(p))$ an imbedded submanifold in \mathbb{R}^2 ?

- **2.** Let *M* be the hyperboloid of two sheets given by $y^2 z^2 x^2 = 1$.
- (a) Let $p \in M$. Explain how we can identify T_pM by a subspace of \mathbb{R}^3 using a chart at p.
- (b) Describe $T_p(M)$ as a subspace of \mathbb{R}^3 if $p = (0, 2, \sqrt{3})$.
- (c) Determine whether the map which assigns to each point q = (x, y, z) the vector (y, x + z, y) is a smooth vector field on M.

3. Let $F: M \to N$ be a smooth function between the manifolds M and N and let a be a smooth function on M.

- (a) Show that $F^*(da) = d(F^*(a))$
- (b) Verify the formula $F^*d = dF^*$ on the forms of type $\phi_1 \wedge \phi_2$ where ϕ_1 and ϕ_2 are 1-forms.
- (c) Let $g: \mathbb{R}^3 \to \mathbb{R}^2$ be given by

$$g(x, y, z) = (xy, x^2yz)$$

Compute $g^*(2xydx \wedge dy)$

4. Let

$$\alpha = \frac{1}{2\pi} \frac{xdy - ydx}{x^2 + y^2}$$

- (a) Prove that α is a closed 1-form on $\mathbb{R}^2 \setminus 0$
- (b) Compute the integral of α over the unit circle S^1 ?
- (c) How does this shows that α is not exact?