GEOMETRY TMS EXAM February 17, 2016

Duration: 3 hours.

- (1) Show that $N = \{[x:y:z:w] \in \mathbb{R}P^3 | x^3 + y^3 + z^3 + w^3 = 0\}$ is an embedded submanifold of $\mathbb{R}P^3$, real projective space of dimension 3, and compute its dimension.
- (2) Let M be an orientable smooth manifold and fix an orientation for unit circle S^1 . Given a smooth map $\gamma: S^1 \longrightarrow M$ and a differential 1-form $\alpha \in \Omega^1(M)$ define $\int_{\gamma} \alpha := \int_{S^1} \gamma^*(\alpha)$.
- a) Show that if α is exact then for any $\gamma: S^1 \longrightarrow M$,

$$\int_{\gamma} \alpha = 0.$$

b) Show that if $d\alpha = 0$, and $H: [0,1] \times S^1 \longrightarrow M$ is a smooth map then,

$$\int_{\gamma_0} \alpha = \int_{\gamma_1} \alpha,$$

where $\gamma_0(\theta) = H(0, \theta)$ and $\gamma_1(\theta) = H(1, \theta)$.

- (3) Let O(n) denotes the orthogonal $n \times n$ real matrices and M(n) denotes $n \times n$ real matrices.
- a) Show that the tangent space of O(n) at the identity matrix, $T_IO(n)$ is the space of all anti-symmetric matrices.
- b) Show that for any $A \in O(n)$, $T_A O(n) = \{XA | X^T = -X\}$.
- c) Show that if $X \in T_IO(n)$ then $e^X \in O(n)$ where $e^X = I + X + \frac{1}{2}X^2 + \frac{1}{3!}X^3 + \cdots$.
- d) Consider the smooth map $exp: M(n) \longrightarrow M(n)$, defined as $exp(X) = e^X$. Show that the differential dexp(0) at zero matrix $0 \in M(n)$ is the identity linear transformation.
- (4) Let Z be the preimage of a regular value $y \in Y$ under the smooth map $F: X \longrightarrow Y$ between smooth manifolds X and Y. Prove that the kernel of the derivative $dF_x: T_xX \longrightarrow T_yY$ at any point $x \in Z$ is precisely the tangent space to Z at x, T_xZ .
- (5) Define $F: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ by $F(u,v) = (u,v,u^2-v^2)$. On \mathbb{R}^2 with coordinates (u,v) consider the following vector fields; $U_1 = u \frac{\partial}{\partial v} v \frac{\partial}{\partial u}$ and $U_2 = u \frac{\partial}{\partial u}$ and on \mathbb{R}^3 with coordinates (x,y,z) consider 2-form $\omega = y dx \wedge dz + x dy \wedge dz$ and 1-form $\eta = z dx + x dy + y dz$. Compute the following:
- a) $F_*[U_1, U_2]$
- b) $d\omega$
- c) $F^*(d\eta)$
- d) $F^*(\omega)(p)[V_1, V_2]$ where $V_1 = (1, 2)$ and $V_2 = (0, 1)$ are the vectors in $T_p\mathbb{R}^2$, for $p = (1, 1) \in \mathbb{R}^2$
- e) $\omega_{F(p)}(X_1, X_2)$ where $X_1 = F_*(V_1)$ and $X_2 = F_*(V_2)$.