METU Department of Mathematics

TMS EXAM IN TOPOLOGY Geometry (February, 2018, 10:00-13:00)

- 1. (a) Tangent vector $v \in T_{(1,1)}\mathbb{R}^2$ at point $(1,1) \in \mathbb{R}^2$ in Cartesian coordinates (x,y) can be expressed as $2\frac{\partial}{\partial x} + 1\frac{\partial}{\partial y}$. Express vector v in the polar coordinates (r,θ) in terms of $\frac{\partial}{\partial r}$ and $\frac{\partial}{\partial \theta}$.
- (b) Let α denote the restrictions to $S^2 = \{x^2 + y^2 + z^2 = 1\} \subset \mathbb{R}^3$ of the differential forms dx in \mathbb{R}^3 . At which points p of S^2 the differential forms α vanishes as a linear map $\alpha_p \colon T_pS^2 \to \mathbb{R}$?
- (c) Express 2-form $dz \wedge dx$ in chart (x, y) on the bottom half-sphere $S_{-}^{2} = \{x^{2} + y^{2} + z^{2} = 1, z < 0\}$.
- 2. Determine if the following maps are immersions, submersions, embedding, or neither.
 - (a) $\mathbb{R} \to \mathbb{R}^2$, $t \mapsto (\cos t, \sin(2t+1))$.
 - (b) $\mathbb{R}^2 \to \mathbb{R}$, $(x, y) \mapsto x \cos y$.
 - (c) $(0,1) \times (0,1) \to \mathbb{R}^2$, $(x,y) \mapsto (\cos x, \sin y)$.
- 3. For the function $f(x,y)=x^2y$ and vector fields $V=x\frac{\partial}{\partial x}+2y\frac{\partial}{\partial y}$, and $U=(x+y+1)\frac{\partial}{\partial x}+(xy)\frac{\partial}{\partial y}$ in \mathbb{R}^2 find:
 - (a) V(f) (differentiate f with respect to vector field V),
 - (b) df(U) (the differential of f on the vector field U),
 - (c) [V, U] (the Lie bracket of V and U),
- (d) $L_V f$, $L_V (df)$, $L_V (dx \wedge dy)$ and $L_V (W)$ (the Lie derivatives of f, df, $dx \wedge dy$ and W with respect to vector field V).
 - **4.** Assume that f(x,y) = 0 defines in \mathbb{R}^2 a smooth curve C.
- (a) Prove that the restrictions to C of the 1-forms $\frac{dx}{f_y}$ and $-\frac{dy}{f_x}$ coincide at every point where the partials f_x and f_y do not vanish.
 - (b) Deduce that the above 1-form can be extended to the whole curve C.
 - (c) Conclude that the above 1-form does not vanish at all points on curve C.