# M.E.T.U. 

## Department of Mathematics <br> TMS Exam in Geometry

March $12^{\text {th }}, 2021$
Duration: 180 minutes

1. Consider the set $S$ of all straight lines in $\mathbb{R}^{2}$ (not necessarily through the origin). Show that $S$ is a smooth manifold by giving a smooth structure.
(Note that for $\left(a_{1}, b_{1}\right) \neq(0,0)$ and $\left(a_{2}, b_{2}\right) \neq(0,0), a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ define the same line if and only if $\left(a_{1}, b_{1}, c_{1}\right)=\lambda\left(a_{2}, b_{2}, c_{2}\right)$ for some non-zero $\lambda \in \mathbb{R}$.)
2. Consider the sets $M_{a}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=a\right\}$ and $N_{b}=\left\{(x, y, z) \in \mathbb{R}^{3}: x-y^{2}=b\right\}$.
(a) Show that $M_{2} \cap N_{0}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=2, x-y^{2}=0\right\}$ is a submanifold of $\mathbb{R}^{3}$. What is the dimension of this submanifold?
(b) Write a basis for the tangent space $T_{(1,1,0)}\left(M_{2} \cap N_{0}\right) \subset T_{(1,1,0)} \mathbb{R}^{3}$.
(c) For which values of $a$ and $b$ is $M_{a} \cap N_{b}$ a submanifold of $\mathbb{R}^{3}$ ? Explain your answer.
3. Consider $F: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ defined as

$$
F(x, y, z)=\left(x, y+x^{2}, z-x y\right)=(u, v, w)
$$

Consider the vector fields

$$
\begin{aligned}
X & =x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y} \\
Y & =-x^{2} \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}
\end{aligned}
$$

and 1-form $\varphi=v u^{2} d u+w d v+e^{u} d w$
(a) Compute $\left[F_{*} X, F_{*} Y\right]$ where $F_{*}$ is the push-forward/induced map which is defined as $\left(F_{*} V\right)(p)=F_{*}\left(V_{p}\right)$ for any vector field $V$.
(b) Verify that $d\left(F^{*} \varphi\right)=F^{*}(d \varphi)$.
4. Let $S$ be the portion of the cylinder $S: x^{2}+y^{2}=1$ consisting of points with $0 \leq z \leq 1, x>0$.
(a) Choose the orientation on $S$ assigning to each point $p=(a, b, c)$ on $M$ the orientation class $[(-b, a, 0),(0,0,1)]$ of the tangent space $T_{p}(S)$. Exhibit a parametrization $\phi: U \rightarrow S, U \subset \mathbb{R}^{2}$, about $p$ so that $\phi$ is orientation preserving.
(b) What is the boundary $\partial S$ of $S$ ? Let $p=(a, b, c)$ be a point on $\partial S$, exhibit a basis for $T_{p}(\partial S)$.
(c) Describe the boundary orientation on $\partial M$ explicitly when $S$ is given the orientation on part (a).

