Graduate Preliminary Examination

Numerical Analysis I
Duration: 3 Hours

1. Consider the matrix

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right)
$$

Using any method you like, determine the reduced and full $Q R$-factorization of A
2. Consider the linear system of equations $A x=b$ with

$$
A=\left(\begin{array}{ccc}
1 & a & a \\
a & 1 & a \\
a & a & 1
\end{array}\right) .
$$

a can be positive or negative.
(a) Find the range of values of a will the Jacobi method always convergent by computing the exact eigenvalues of the iteration matrix ?
(b) Find the range of values of a will the Gauss-Seidel method always convergent by estimating the eigenvalues of the iteration matrix using Gerschgorin's circle theorem?
3. Assume that $A \in \mathbb{C}^{m x n}$ with $m>n$ has a full rank. Show how to choose ϵ so that the $2-$ norm condition number of

$$
B=\binom{A}{\epsilon^{1 / 2} I} \quad(I n x n \text { identity matrix })
$$

is equal to the square root of the $2-$ norm condition number of A.
(Hint: Consider $B^{*} B$ and the singular value decomposition of A).
4. (a) Assume $A^{T} A x=A^{T} b$ and $\left(A^{T} A+E\right) \hat{x}=A^{T} b$ with $2\|E\| 2 \leq \sigma_{n}(A)^{2}$. Show that if $r=b-A x$ and $\hat{r}=b-A \hat{x}$, then

$$
\hat{r}-r=\left(I-A\left(A^{T} A+E\right)^{-1} A^{T}\right) A x
$$

and

$$
\|\hat{r}-r\|_{2} \leq 2 \kappa_{2}(A) \frac{\|E\|_{2}}{\|A\|_{2}}\|x\|_{2}
$$

(b) Assume $A^{T} A x=A^{T} b$ and $A^{T} A \hat{x}=A^{T} b+e$ where $\|e\|_{2} \leq \epsilon\left\|A^{T}\right\|_{2}\|b\|_{2}$ and A has full column rank. Show that

$$
\frac{\|x-\hat{x}\|_{2}}{\|x\|_{2}} \leq \epsilon \kappa_{2}(A)^{2} \frac{\left\|A^{2}\right\|_{2}\|b\|_{2}}{\left\|A^{T} b\right\|_{2}} .
$$

