Graduate Preliminary Examination Numerical Analysis I Duration: 3 Hours 1. Consider the iterative method $$x^{(k+1)} = Ax^{(k)} + b$$ where $A = \begin{bmatrix} 5 & 3/2 \\ 4 & 4 \end{bmatrix}$ and b is an arbitrary vector. - (a) Does this iteration converge for arbitrary initial vectors, $x^{(0)}$. - (b) Find α , if possible, so that the following iteration converges for arbitrary initial vectors, $x^{(0)}$: $$\begin{array}{rcl} y^{(0)} & = & x^{(0)} \\ x^{(k+1)} & = & Ay^{(k)} + b \\ y^{(k+1)} & = & \alpha y^{(k)} + (1-\alpha)x^{(k+1)} \end{array}$$ where A is the matrix given above. 2. Show that the singular values of the following matrices are the same as their eigenvalues $$A = \left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 7 \end{array} \right], \quad B = \left[\begin{array}{ccc} 4 & 2 & 1 \\ 2 & 8 & 0 \\ 1 & 0 & 8 \end{array} \right].$$ (Hint:Compute the singular value decomposition of the matrices A and B). 3. The quantity A is going to be computed $$A = \frac{x^3 \sqrt{y}}{z^2}$$ with the values $$x = 8.36, \quad y = 80.46, \quad z = 25.8$$ where the absolute errors are $$e_x = 0.01$$, $e_y = 0.02$, $e_z = 0.03$, for x, y , and z , respectively. - (a) Find the upper bound for the relative error Rel_A of A. - (b) Find the absolute error e_A in A. 4. Consider the $n \times n$, nonsingular matrix A. The Frobenious norm of A is given by $$||A|| = \left(\sum_{i,j} |a_{i,j}|^2\right)^{1/2}$$ - (a) Construct the perturbation δA , with smallest Frobenious norm such that $A-\delta A$ is singular. (Hint: you might use of the primary decompositions of A) - (b) What is the Frobenious norm of this special δA ? - (c) Prove that it is the smallest such perturbation?