Graduate Preliminary Examination Numerical Analysis I
 Duration: 3 Hours

1. (a) Suppose $A \in \mathbb{C}^{m \times m}$ and $\lambda_{1}, \cdots, \lambda_{m} \in \mathbb{C}$ are eigenvalues of A. Prove that

$$
\operatorname{tr}(A)=\sum_{j=1}^{m} \lambda_{j}
$$

(b) Prove that, if A is Hermitian, then there is a unitary matrix U and a diagonal matrix D such that $U^{*} A U=D$
(c) Prove that, if A is a real symmetric matrix, then there is an orthogonal matrix O and a diagonal matrix D such that $O^{T} A O=D$
2. We wish to solve $A x=b$ iteratively where

$$
A=\left[\begin{array}{ccc}
1 & 1 & -1 \\
1 & 2 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Show that for this A the Jacobi method and the Gauss-Seidel method both converge. Explain why for this A one of these methods is better than the other.
3. Suppose $A \in \mathbb{R}^{n \times n}$ and $\|\cdot\|$ denotes a matrix norm (Not necessarily induced by a vector norm) which also satisfies the compatibility property: for all $B \in \mathbb{R}^{n \times n}$ and $C \in \mathbb{R}^{n \times n}$,

$$
\|B C\| \leq\|B\|\|C\| .
$$

Let $\rho(A)$ denote the spectral radius of A.
(a) Show that for $\rho(A) \leq\|A\|$ and then, that $\rho(A) \leq\left\|A^{k}\right\|^{1 / k}$.
(b) Show that for any given $0<\epsilon \ll 1$,

$$
\lim _{k \rightarrow \infty} \frac{\left\|A^{k}\right\|}{(\rho(A)+\epsilon)^{k}}=0 .
$$

Thus, conclude that $\lim _{k \rightarrow \infty}\left\|A^{k}\right\|^{1 / k} \leq \rho(A)$.
(Hint: You might use the fact that there exists an operator norm $\|A\|_{\epsilon, A}$ such that $\|A\|_{\epsilon, A} \leq \rho(A)+\epsilon / 2$, for all $\epsilon>0$)
(c) From parts (a) and (b) what can you say about

$$
\lim _{k \rightarrow \infty}\left\|A^{k}\right\|^{1 / k}
$$

4. Let A be a real symmetric $n \times n$ matrix having the eigenvalues λ_{1} with

$$
\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{n}\right|
$$

and the corresponding eigenvectors x_{1}, \cdots, x_{n} with $\chi_{i}^{T} \chi_{k}=\delta_{i k}$. Starting with an initial vector y_{0} for which $x_{i}^{T} y_{0} \neq 0$, suppose one computes

$$
y_{k+1}:=\frac{1}{\left\|A y_{k}\right\|} A y_{k} \quad \text { for } \quad k=0,1,2, \cdots
$$

with an arbitrary vector norm $\|\cdot\|$, and concurrently the quantities

$$
q_{k i}:=\frac{\left(A y_{k}\right)_{i}}{\left(y_{k}\right)_{i}}, \quad 1 \leq i \leq n, \quad \text { in case }\left(y_{k}\right)_{i} \neq 0
$$

and the Rayleigh quotient

$$
r_{k}:=\frac{y_{k}^{T} A y_{k}}{y_{k}^{T} y_{k}}
$$

Prove the following:
(a) $q_{k i}=\lambda_{1}\left[1+O\left(\left(\lambda_{2} / \lambda_{1}\right)^{k}\right)\right]$ for all i with $\left(x_{1}\right)_{i} \neq 0$.
(b) $r_{k}=\lambda_{1}\left[1+O\left(\left(\lambda_{2} / \lambda_{1}\right)^{2 k}\right)\right]$.

